Back to Search Start Over

Towards computing canonical lifts of ordinary elliptic curves in medium characteristic

Authors :
Maiga, Abdoulaye
Robert, Damien
Laboratoire d'Algèbre, de Cryptologie, de Géométrie Algébrique et Applications (LACGAA)
Université Cheikh Anta Diop [Dakar, Sénégal] (UCAD)
Lithe and fast algorithmic number theory (LFANT)
Institut de Mathématiques de Bordeaux (IMB)
Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
ANR-19-CE48-0008,CIAO,Cryptographie, isogenies et variété abéliennes surpuissantes(2019)
Maïga, Abdoulaye
Cryptographie, isogenies et variété abéliennes surpuissantes - - CIAO2019 - ANR-19-CE48-0008 - AAPG2019 - VALID
Publication Year :
2022
Publisher :
HAL CCSD, 2022.

Abstract

Let $p$ be a prime; using modular polynomial $\Phi_p$, T.~Satoh and al\cite{satoh2000canonical,harley2002,vercau} developed several algorithmsto compute the canonical lift of an ordinary elliptic curve $E$ over$\F_{p^n}$ with $j$-invariant not in $\F_{p^2}$. When $p$ is constant, thebest variant has a complexity $\Otilde(n m)$ to lift $E$ to $p$-adicprecision~$m$. As an application, lifting $E$ to precision $m=O(n)$ allowsto recover its cardinality in time $\Otilde(n^2)$. However, taking $p$ intoaccount the complexity is $\Otilde(p^2 n m)$, so Satoh's algorithm can onlybe applied to small~$p$.We propose in this paper two variants of these algorithms, which do notrely on the modular polynomial, for computing the canonical lift of anordinary curve. Our new method yield a complexity of $\Otilde(p n m)$ tolift at precision~$m$, and even $\Otilde(\sqrt{p} nm)$ when we are provideda rational point of $p$-torsion on the curve. This allows to extend Saoth'spoint counting algorithm to larger~$p$.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.dedup.wf.001..729f0d2ce74466c3808bc0ff672b3bfe