Back to Search Start Over

Process-based modeling of nitrous oxide emissions from wheat-cropped soils at the sub-regional scale

Authors :
Gabrielle , Benoit
Laville , Patricia
Duval , Odile
Nicoullaud , Bernard
Germon , Jean-Claude
Hénault , Catherine
Environnement et Grandes Cultures (EGC)
Institut National de la Recherche Agronomique (INRA)-Institut National Agronomique Paris-Grignon (INA P-G)
UR Science du sol (UR SCIENCE DU SOL)
Institut National de la Recherche Agronomique (INRA)
Microbiologie du Sol et de l'Environnement (MSE)
Institut National de la Recherche Agronomique (INRA)-Université de Bourgogne (UB)
financement Ministère de l'Ecologie et du Développement Durable (programme GESSOL)
Unité de Science du Sol (Orléans) (URSols)
Environnement et Grandes Cultures ( EGC )
Institut National de la Recherche Agronomique ( INRA ) -Institut National Agronomique Paris-Grignon ( INA P-G )
UR Science du sol ( UR SCIENCE DU SOL )
Institut National de la Recherche Agronomique ( INRA )
Microbiologie du Sol et de l'Environnement ( MSE )
Institut National de la Recherche Agronomique ( INRA ) -Université de Bourgogne ( UB )
Source :
Global Biogeochemical Cycles, Global Biogeochemical Cycles, American Geophysical Union, 2006, 20, pp.GB4018. ⟨10.1029/2006GB002686⟩, Global Biogeochemical Cycles, American Geophysical Union, 2006, 20 (GB4018), pp.GB4018. ⟨10.1029/2006GB002686⟩, Global Biogeochemical Cycles, American Geophysical Union, 2006, 20, pp.GB4018. 〈10.1029/2006GB002686〉
Publication Year :
2006
Publisher :
HAL CCSD, 2006.

Abstract

Arable soils are a large source of nitrous oxide (N2O) emissions, making up half of the biogenic emissions worldwide. Estimating their source strength requires methods capable of capturing the spatial and temporal variability of \ony~emissions, along with the effects of crop management. Here, we applied a process-based model, CERES, with geo-referenced input data on soils, weather, and land use to map N2O emissions from wheat-cropped soils in three agriculture intensive regions in France. Emissions were mostly controlled by soil type and local climate conditions, and only to a minor extent by the doses of fertilizer nitrogen applied. As a result, the direct emission factors calculated at the regional level were much smaller (ranging from 0.0007 to 0.0033 kg N2O-N kg N) than the value of 0.0125 kg N2O-N kg N currently recommended in the IPCC Tier 1 methodology. Regional emissions were far more sensitive to the soil microbiological parameters governing denitrification and its fraction evolved as N2O, soil bulk density, and soil initial inorganic N content. Mitigation measures should therefore target a reduction in the amount of soil inorganic N upon sowing of winter crops, and a decrease of the soil N2O production potential itself. From a general perspective, taking into account the spatial variability of soils and climate thereby appears necessary to improve the accuracy of national inventories, and to tailor mitigation strategies to regional characteristics.

Details

Language :
English
ISSN :
08866236
Database :
OpenAIRE
Journal :
Global Biogeochemical Cycles, Global Biogeochemical Cycles, American Geophysical Union, 2006, 20, pp.GB4018. ⟨10.1029/2006GB002686⟩, Global Biogeochemical Cycles, American Geophysical Union, 2006, 20 (GB4018), pp.GB4018. ⟨10.1029/2006GB002686⟩, Global Biogeochemical Cycles, American Geophysical Union, 2006, 20, pp.GB4018. 〈10.1029/2006GB002686〉
Accession number :
edsair.dedup.wf.001..72e649437215703b41d461e61d98f3cd
Full Text :
https://doi.org/10.1029/2006GB002686⟩