Back to Search
Start Over
Human Induced Pluripotent Stem Cell-Derived Cardiomyocyte Encapsulating Bioactive Hydrogels Improve Rat Heart Function Post Myocardial Infarction
- Source :
- Stem Cell Reports, Vol 9, Iss 5, Pp 1415-1422 (2017)
- Publication Year :
- 2017
- Publisher :
- Elsevier, 2017.
-
Abstract
- Summary: Tissue engineering offers an exciting possibility for cardiac repair post myocardial infarction. We assessed the effects of combined polyethylene glycol hydrogel (PEG), human induced pluripotent stem cell-derived cardiomyocyte (iPSC-CM), and erythropoietin (EPO) therapy in a rat model of myocardial infarction. PEG with/out iPSC-CMs and EPO; iPSC-CMs in saline; or saline alone was injected into infarcted hearts shortly after infarction. Injection of almost any combination of the therapeutics limited acute elevations in chamber volumes. After 10 weeks, attenuation of ventricular remodeling was identified in all groups that received PEG injections, while ejection fractions were significantly increased in the gel-EPO, cell, and gel-cell-EPO groups. In all treatment groups, infarct thickness was increased and regions of muscle were identified within the scar. However, no grafted cells were detected. Hence, iPSC-CM-encapsulating bioactive hydrogel therapy can improve cardiac function post myocardial infarction and increase infarct thickness and muscle content despite a lack of sustained donor-cell engraftment. : Human iPSC-derived cardiomyocyte-encapsulating bioactive hydrogel therapy can improve cardiac function post myocardial infarction and increase infarct thickness and muscle content despite a lack of sustained donor-cell engraftment. This novel combination of injectable hydrogels, iPSCs, and the cardioprotective molecule EPO provides a highly translational strategy with excellent potential for prevention of cardiac failure. Keywords: myocardial infarction, rat, myocardial tissue engineering, hydrogel, induced pluripotent stem cell-derived cardiomyocytes, iPSC-CMs, MRI, erythropoietin
Details
- Language :
- English
- ISSN :
- 22136711
- Volume :
- 9
- Issue :
- 5
- Database :
- OpenAIRE
- Journal :
- Stem Cell Reports
- Accession number :
- edsair.dedup.wf.001..7af033fa346c1bbf8249102e8798bf85