Back to Search Start Over

Energy management hypothesis for hybrid power system of H2/WT/PV/GMT via AI techniques

Authors :
Tabanjat, Abdulkader
Becherif, Mohamed
Hissel, Daniel
Ramadan, Haitham Saad
Laboratoire des Sciences de l'Information et des Systèmes (LSIS)
Centre National de la Recherche Scientifique (CNRS)-Arts et Métiers Paristech ENSAM Aix-en-Provence-Université de Toulon (UTLN)-Aix Marseille Université (AMU)
Franche-Comté Électronique Mécanique, Thermique et Optique - Sciences et Technologies (UMR 6174) (FEMTO-ST)
Université de Technologie de Belfort-Montbeliard (UTBM)-Ecole Nationale Supérieure de Mécanique et des Microtechniques (ENSMM)-Université de Franche-Comté (UFC)
Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS)
Femto-st, Energie
Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Arts et Métiers Paristech ENSAM Aix-en-Provence-Centre National de la Recherche Scientifique (CNRS)
Université de Technologie de Belfort-Montbeliard (UTBM)-Ecole Nationale Supérieure de Mécanique et des Microtechniques (ENSMM)-Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC)
Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)
Source :
International Journal of Hydrogen Energy, International Journal of Hydrogen Energy, Elsevier, 2018, 43 (6), pp.3527-3541, International Journal of Hydrogen Energy, 2018, 43 (6), pp.3527-3541
Publication Year :
2018
Publisher :
HAL CCSD, 2018.

Abstract

International audience; This paper aims to attain an efficient and optimized energy management operation of Hybrid Power System (HPS) by using Artificial Intelligent (AI) controllers. The HPS comprises Wind Turbines (WTs) and Photovoltaic (PV) panels such as primary Renewable Energy Sources (RESs) in addition to both Fuel Cells (FCs) and Gas Micro–Turbines (GMTs) which are used as Backup Sources (BKUSs).To avoid the undesired negative impacts on the HPS functionality because of the RESs intermittency, the Hydrogen Storage System (HSS) is integrated into the system. Two different energy management strategies based on Neural Networks (NN) and Fuzzy Logic Control (FLC) respectively are applied to the HPS for minimizing the energy production cost and keeping the buffer role of HSS. Using MATLAB™, the proposed two AI introduced solutions are used for reaching adequate energy management operation performance for the overall HPS during 24 h load variation. From the numerical simulations, the superiority of the FLC over the NN control approach is discussed. The proposed HSS can positively act as a buffer solution to avoid drawbacks of RESs during unexpected load peaks and/or discontinuous energy production.

Details

Language :
English
ISSN :
03603199
Database :
OpenAIRE
Journal :
International Journal of Hydrogen Energy, International Journal of Hydrogen Energy, Elsevier, 2018, 43 (6), pp.3527-3541, International Journal of Hydrogen Energy, 2018, 43 (6), pp.3527-3541
Accession number :
edsair.dedup.wf.001..7b11c33ea34f7ea447dbe2ffc11c36f7