Back to Search Start Over

Simple and statistically sound strategies for analysing physical theories

Authors :
AbdusSalam, Shehu S.
Agocs, Fruzsina J.
Allanach, Benjamin C.
Athron, Peter
Balázs, Csaba
Bagnaschi, Emanuele
Bechtle, Philip
Buchmueller, Oliver
Beniwal, Ankit
Bhom, Jihyun
Bloor, Sanjay
Bringmann, Torsten
Buckley, Andy
Butter, Anja
Camargo-Molina, José Eliel
Chrzaszcz, Marcin
Conrad, Jan
Cornell, Jonathan M.
Danninger, Matthias
de Blas, Jorge
De Roeck, Albert
Desch, Klaus
Dolan, Matthew
Dreiner, Herbert
Eberhardt, Otto
Ellis, John
Farmer, Ben
Fedele, Marco
Flächer, Henning
Fowlie, Andrew
Gonzalo, Tomás E.
Grace, Philip
Hamer, Matthias
Handley, Will
Harz, Julia
Heinemeyer, Sven
Hoof, Sebastian
Hotinli, Selim
Jackson, Paul
Kahlhoefer, Felix
Kowalska, Kamila
Krämer, Michael
Kvellestad, Anders
Lucio Martinez, Miriam
Mahmoudi, Farvah
Martinez Santos, Diego
Martinez, Gregory D.
Mishima, Satoshi
Olive, Keith
Paul, Ayan
Prim, Markus Tobias
Porod, Werner
Raklev, Are
Renk, Janina J.
Rogan, Christopher
Roszkowski, Leszek
Ruiz de Austri, Roberto
Sakurai, Kazuki
Scaffidi, Andre
Scott, Pat
Sessolo, Enrico Maria
Stefaniak, Tim
Stöcker, Patrick
Su, Wei
Trojanowski, Sebastian
Trotta, Roberto
Tsai, Yue-Lin Sming
Van Den Abeele, Jeriek
Valli, Mauro
Vincent, Aaron C.
Weiglein, Georg
White, Martin
Wienemann, Peter
Wu, Lei
Zhang, Yang
Institut de Physique des 2 Infinis de Lyon (IP2I Lyon)
Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)
Publication Year :
2020

Abstract

Physical theories that depend on many parameters or are tested against data from many different experiments pose unique challenges to parameter estimation. Many models in particle physics, astrophysics and cosmology fall into one or both of these categories. These issues are often sidestepped with very simplistic and statistically unsound ad hoc methods, involving naive intersection of parameter intervals estimated by multiple experiments, and random or grid sampling of model parameters. Whilst these methods are easy to apply, they exhibit pathologies even in low-dimensional parameter spaces, and quickly become problematic to use and interpret in higher dimensions. In this article we give clear guidance for going beyond these rudimentary procedures, suggesting some simple methods for performing statistically sound inference, and recommendations of readily-available software tools and standards that can assist in doing so. Our aim is to provide physicists with recommendations for reaching correct scientific conclusions, with only a modest increase in analysis burden.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.dedup.wf.001..7d729ce338d2e742d3ac35c9acab12c2
Full Text :
https://doi.org/10.3204/PUBDB-2020-05286