Back to Search Start Over

Reduced models for the Poisson problem in perforated domains

Authors :
Boulakia, Muriel
Grandmont, Céline
Lespagnol, Fabien
Zunino, Paolo
Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)
Laboratoire Jacques-Louis Lions (LJLL (UMR_7598))
Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
COmputational Mathematics for bio-MEDIcal Applications (COMMEDIA)
Inria de Paris
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jacques-Louis Lions (LJLL (UMR_7598))
Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
Département de Mathématique [Bruxelles] (ULB)
Faculté des Sciences [Bruxelles] (ULB)
Université libre de Bruxelles (ULB)-Université libre de Bruxelles (ULB)
Laboratorio di Modellistica e Calcolo Scientifico MOX (Dipartimento di Matematica 'Francesco Brioschi')
Politecnico di Milano [Milan] (POLIMI)
Fabien Lespagnol is supported by the project A new computational approach for the fluid-structure in-teraction of slender bodies immersed in three-dimensional flows granted by the Università Italo-Francese, in the framework Vinci 2019.
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

We develop a fictitious domain method to approximate a Dirichlet problem on a domain with small circular holes (simply called a perforated domain). To address the case of many small inclusions or exclusions, we propose a reduced model based on the projection of the homogeneous Dirichlet boundary constraint on a finite dimensional approximation space. We analyze the existence of the solution of this reduced problem and prove its convergence towards the limit problem without holes. We next obtain an estimate of the gap between the solution of the reduced model and the solution of the full initial model with small holes, the convergence rate depending on the size of the inclusion and on the number of modes of the finite dimensional space. The numerical discretization of the reduced problem is addressed by the finite element method, using a computational mesh that does not fit to the holes. The approximation properties of the finite element method are analyzed by a-priori estimates and confirmed by numerical experiments. elliptic differential equations, small inclusions, asymptotic analysis, approximated numerical method.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.dedup.wf.001..801e6f769dc7d2f4932ca51ea2f83ee8