Back to Search Start Over

Analysis and Mitigation of the False Alarms of the Reverse JPEG Compatibility Attack

Authors :
Butora, Jan
Bas, Patrick
Cogranne, Rémi
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Laboratoire Informatique et Société Numérique [LIST3N]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL)
Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)
Laboratoire Informatique et Société Numérique (LIST3N)
Université de Technologie de Troyes (UTT)
Laboratoire Modélisation et Sûreté des Systèmes [LM2S]
Centre National de la Recherche Scientifique (CNRS)
Laboratoire Modélisation et Sûreté des Systèmes (LM2S)
Institut Charles Delaunay (ICD)
Université de Technologie de Troyes (UTT)-Centre National de la Recherche Scientifique (CNRS)-Université de Technologie de Troyes (UTT)-Centre National de la Recherche Scientifique (CNRS)
Source :
Proceedings of the 2023 ACM Workshop on Information Hiding and Multimedia Security, IH&MMSec'23, IH&MMSec'23, Jun 2023, Chicago, United States. pp.59-66, ⟨10.1145/3577163.3595092⟩, IH&MMSec'23, Jun 2023, Chicago, United States. ⟨10.1145/3577163.3595092⟩
Publication Year :
2023
Publisher :
ACM, 2023.

Abstract

International audience; The Reverse JPEG Compatibility Attack can be used for steganalysis of JPEG images compressed with Quality Factor 100 by detecting increased variance of decompression rounding errors. In this work, we point out the dangers associated with this attack by showing that in an uncontrolled environment, the variance can be elevated simply by using a different JPEG compressor. If not careful, the steganalyst can wrongly misclassify cover images. In order to deal with the diversity associated to the devices or softwares generating JPEGs, we propose in this paper to build a deep learning detector trained on a huge dataset of downloaded images. Experimental evaluation shows that such a detector can provide operational false alarms as small as 10^{−4} , while still correctly classifying 90% of stego images. Furthermore, it is shown that this performance is directly applicable to other image datasets. As a side product, we indicate that the attack is not applicable to images developed with a specific JPEG compressor based on the trunc quantization function.

Details

Language :
English
Database :
OpenAIRE
Journal :
Proceedings of the 2023 ACM Workshop on Information Hiding and Multimedia Security, IH&MMSec'23, IH&MMSec'23, Jun 2023, Chicago, United States. pp.59-66, ⟨10.1145/3577163.3595092⟩, IH&MMSec'23, Jun 2023, Chicago, United States. ⟨10.1145/3577163.3595092⟩
Accession number :
edsair.dedup.wf.001..833132d9d662fcf7fe82f3fb855354c4
Full Text :
https://doi.org/10.1145/3577163.3595092⟩