Back to Search Start Over

Asymptotic analysis of abstract two-scale wave propagation problems

Authors :
Imperiale, Sébastien
Université Paris-Saclay
Mathematical and Mechanical Modeling with Data Interaction in Simulations for Medicine (M3DISIM)
Laboratoire de mécanique des solides (LMS)
École polytechnique (X)-MINES ParisTech - École nationale supérieure des mines de Paris
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-MINES ParisTech - École nationale supérieure des mines de Paris
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
École polytechnique (X)-Mines Paris - PSL (École nationale supérieure des mines de Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Mines Paris - PSL (École nationale supérieure des mines de Paris)
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

This work addresses the mathematical analysis, by means of asymptotic analysis, of linear wave propagation problems involving two scales, represented by a single small parameter, and written in an abstract setting. This abstract setting is defined using linear operators in Hilbert spaces and also enters the framework of semi-group theory. In this setting, we show, under some assumptions on the structure of the wave propagation problems, weak and strong convergence of solutions with respect to the small parameter towards the solution of a well-defined limit problem.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.dedup.wf.001..91adce2d0b2994c792949a5557652250