Back to Search Start Over

Descent sets for oscillating tableaux

Authors :
Rubey, Martin
Sagan, Bruce E.
Westbury, Bruce W.
Institut für Algebra, Zahlentheorie und Diskrete Mathematik (Hannover)
Fakultät fur Mathematik und Physik [Hannover]
Leibniz Universität Hannover [Hannover] (LUH)-Leibniz Universität Hannover [Hannover] (LUH)
Fakultät für Mathematik und Geoinformation [Wien] (TU Wien)
Vienna University of Technology (TU Wien)
Department of Mathematics [Lansing]
Michigan State University [East Lansing]
Michigan State University System-Michigan State University System
Department of Mathematics, University of Warwick
Warwick Mathematics Institute (WMI)
University of Warwick [Coventry]-University of Warwick [Coventry]
Alain Goupil and Gilles Schaeffer
Monteil, Alain
Source :
25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), 2013, Paris, France. pp.97-108
Publication Year :
2013
Publisher :
HAL CCSD, 2013.

Abstract

The descent set of an oscillating (or up-down) tableau is introduced. This descent set plays the same role in the representation theory of the symplectic groups as the descent set of a standard tableau plays in the representation theory of the general linear groups. In particular, we show that the descent set is preserved by Sundaram's correspondence. This gives a direct combinatorial interpretation of the branching rules for the defining representations of the symplectic groups; equivalently, for the Frobenius character of the action of a symmetric group on an isotypic subspace in a tensor power of the defining representation of a symplectic group.<br />Dans cet article, nous définissons la notion d’ensemble de descentes pour un tableau oscillant. Ces descentes sont analogues aux descentes d’un tableau standard dans la théorie des représentations des groupes généraux linéaires. Nous montrons que la correspondance de Sundaram préserve cet ensemble et nous donnons une interprétation combinatoire directe des règles de branchement pour la représentation des groupes symplectiques. Enfin, nous décrivons combinatoirement les caractères de Frobenius associés à l’action du groupe symétrique sur les composantes isotypiques du produit tensoriel des représentations d’un groupe symplectique.

Details

Language :
English
Database :
OpenAIRE
Journal :
25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), 2013, Paris, France. pp.97-108
Accession number :
edsair.dedup.wf.001..9d4b5159bc36a62e7447ed7f05f67fe0