Back to Search Start Over

Modélisation mathématique du transport des nanoparticules dans les tumeurs

Authors :
Vaghi, Cristina
Institut de Mathématiques de Bordeaux (IMB)
Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
Modélisation Mathématique pour l'Oncologie (MONC)
Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Institut Bergonié [Bordeaux]
UNICANCER-UNICANCER-Inria Bordeaux - Sud-Ouest
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Université de Bordeaux
Sébastien Benzekry
Clair Poignard
Raphaëlle Fanciullino
Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Institut Bergonié [Bordeaux]
Source :
Numerical Analysis [math.NA]. Université de Bordeaux, 2020. English. ⟨NNT : 2020BORD0326⟩
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

Nanomedicine offers promising and innovative tools to treat cancer. Recently, liposomes conjugated with an antibody were developed to target breast cancer cells while sparing healthy tissues from the toxicity of the chemotherapy. These nanoparticles are called antibody-nanoconjugates (ANCs) and are currently tested in a preclinical trial. However, the pharmacokinetics, biodistribution, and efficacy of these nanoparticles are not well known and could be improved. Mathematical modeling can help in understanding the intratumor penetration of the nanoparticles and in quantifying the treatment efficacy.Pharmacokinetic-pharmacodynamic modeling evaluates the dose-response relationship in vivo and can be used to optimize the therapy schedule. Here, we described several biological processes using ordinary differential equations: (i) the untreated tumor growth with a novel reduced Gompertz model, (ii) the nanoparticle biodistribution using a two-compartment pharmacokinetic model, and (iii) the therapeutic response with a resistance model. All the models were validated against experimental data in the statistical framework of nonlinear mixed-effects modeling, which models simultaneously the dynamic of the population and the inter-individual variability.Furthermore, we derived a spatial mathematical model with the two-scale asymptotic expansion method to describe the fluid and nanoparticle transport within the tumor tissue. This approach allowed us to evaluate the barriers that impair a homogeneous distribution of nanoparticles at the tumor site. Moreover, we propose a computational framework to predict tumor accumulation of nanoparticles using individual imaging data.; La nanomédecine offre des perspectives ambitieuses pour le traitement du cancer. Récemment, des liposomes conjugués à des anticorps spécifiques ont été développés pour cibler les cellules tumorales du cancer au sein, en réduisant la toxicité de la chimiothérapie dans les tissus sains. Ces nanoparticules, appelées ANC (pour antibody nano-conjugate), sont actuellement testées dans une phase préclinique. Cependant, la pharmacocinétique, la biodistribution et l'efficacité de ces nanoparticules ne sont pas bien caracterisées quantitativement et pourrait être ameliorées. La modélisation mathématique peut aider à mieux comprendre la dynamique de la pénétration des ANC dans la tumeur et à améliorer l'efficacité du traitement.La modélisation pharmacocinétique-pharmacodynamique permet d'évaluer la réponse du traitement extit{in vivo} en fonction de la dose injectée. Dans ce travail, nous avons décrit plusieurs phénomènes biologiques avec des équations differentielles ordinaires : (i) la croissance tumorale avec un nouveau modèle réduit de Gompertz, (ii) la biodistribution des nanoparticules avec un modèle pharmacocinétique à deux compartiments, et (iii) la réponse au traitement avec un modèle de résistance. Tous les modèles ont été calibrés dans le cadre des modèles non linéaires à effets mixtes, qui décrivent la dynamique globale de la population ainsi que la variabilité individuelle.De plus, nous avons dérivé un modèle mathématique spatial avec la technique de développement asymptotique double-échelle pour décrire le transport des fluides et des nanoparticules dans le tissu tumoral. Cette méthodologie nous permet d'évaluer les barrières microscopiques qui empêchent une distribution homogène des ANC dans la tumeur. Finalement, nous proposons un schéma computationnel pour prédire l'accumulation des nanoparticules à partir des données individuels d'imagerie.

Details

Language :
English
Database :
OpenAIRE
Journal :
Numerical Analysis [math.NA]. Université de Bordeaux, 2020. English. ⟨NNT : 2020BORD0326⟩
Accession number :
edsair.dedup.wf.001..a30439fc4c1b42e20e416632ba60ae61