Back to Search
Start Over
Convergence Analysis of Block Majorize-Minimize Subspace Approach
- Source :
- Inria Saclay-Île de France. 2023, Inria Saclay-Île de France. 2022
- Publication Year :
- 2023
- Publisher :
- HAL CCSD, 2023.
-
Abstract
- We consider the minimization of a differentiable Lipschitz gradient but non necessarily convex, function F defined on R N. We propose an accelerated gradient descent approach which combines three strategies, namely (i) a variable metric derived from the majorization-minimization principle ; (ii) a subspace strategy incorporating information from the past iterates ; (iii) a block alternating update. Under the assumption that F satisfies the Kurdyka-Łojasiewicz property, we give conditions under which the sequence generated by the resulting block majorize-minimize subspace algorithm converges to a critical point of the objective function, and we exhibit convergence rates for its iterates.
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Inria Saclay-Île de France. 2023, Inria Saclay-Île de France. 2022
- Accession number :
- edsair.dedup.wf.001..a6ddd917356f099b95701a6a94d7b7f2