Back to Search Start Over

Convergence Analysis of Block Majorize-Minimize Subspace Approach

Authors :
Chouzenoux, Emilie
Fest, Jean-Baptiste
OPtimisation Imagerie et Santé (OPIS)
Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre de vision numérique (CVN)
Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-CentraleSupélec-Université Paris-Saclay
Inria Saclay - Île de France
European Project: ERC-2019-STG-850925,MAJORIS(2020)
European Project: ERC-2019-STG-850925,MAJORIS
Chouzenoux, Emilie
ERC-2019-STG-850925 - MAJORIS - ERC-2019-STG-850925 - INCOMING
Source :
Inria Saclay-Île de France. 2023, Inria Saclay-Île de France. 2022
Publication Year :
2023
Publisher :
HAL CCSD, 2023.

Abstract

We consider the minimization of a differentiable Lipschitz gradient but non necessarily convex, function F defined on R N. We propose an accelerated gradient descent approach which combines three strategies, namely (i) a variable metric derived from the majorization-minimization principle ; (ii) a subspace strategy incorporating information from the past iterates ; (iii) a block alternating update. Under the assumption that F satisfies the Kurdyka-Łojasiewicz property, we give conditions under which the sequence generated by the resulting block majorize-minimize subspace algorithm converges to a critical point of the objective function, and we exhibit convergence rates for its iterates.

Details

Language :
English
Database :
OpenAIRE
Journal :
Inria Saclay-Île de France. 2023, Inria Saclay-Île de France. 2022
Accession number :
edsair.dedup.wf.001..a6ddd917356f099b95701a6a94d7b7f2