Back to Search
Start Over
Analysis and simulation of emergent architectures for internet of things
- Source :
- TDX (Tesis Doctorals en Xarxa), UPCommons. Portal del coneixement obert de la UPC, Universitat Politècnica de Catalunya (UPC), TDR. Tesis Doctorales en Red, instname
- Publication Year :
- 2018
- Publisher :
- Universitat Politècnica de Catalunya, 2018.
-
Abstract
- The Internet of Things (IoT) promises a plethora of new services and applications supported by a wide range of devices that includes sensors and actuators. To reach its potential IoT must break down the silos that limit applications' interoperability and hinder their manageability. These silos' result from existing deployment techniques where each vendor set up its own infrastructure, duplicating the hardware and increasing the costs. Fog Computing can serve as the underlying platform to support IoT applications thus avoiding the silos'. Each application becomes a system formed by IoT devices (i.e. sensors, actuators), an edge infrastructure (i.e. Fog Computing) and the Cloud. In order to improve several aspects of human lives, different systems can interact to correlate data obtaining functionalities not achievable by any of the systems in isolation. Then, we can analyze the IoT as a whole system rather than a conjunction of isolated systems. Doing so leads to the building of Ultra-Large Scale Systems (ULSS), an extension of the concept of Systems of Systems (SoS), in several verticals including Autonomous Vehicles, Smart Cities, and Smart Grids. The scope of ULSS is large in the number of things and complex in the variety of applications, volume of data, and diversity of communication patterns. To handle this scale and complexity in this thesis we propose Hierarchical Emergent Behaviors (HEB), a paradigm that builds on the concepts of emergent behavior and hierarchical organization. Rather than explicitly program all possible situations in the vast space of ULSS scenarios, HEB relies on emergent behaviors induced by local rules that define the interactions of the "things" between themselves and also with their environment. We discuss the modifications to classical IoT architectures required by HEB, as well as the new challenges. Once these challenges such as scalability and manageability are addressed, we can illustrate HEB's usefulness dealing with an IoT-based ULSS through a case study based on Autonomous Vehicles (AVs). To this end we design and analyze well-though simulations that demonstrate its tremendous potential since small modifications to the basic set of rules induce different and interesting behaviors. Then we design a set of primitives to perform basic maneuver such as exiting a platoon formation and maneuvering in anticipation of obstacles beyond the range of on-board sensors. These simulations also evaluate the impact of a HEB deployment assisted by Fog nodes to enlarge the informational scope of vehicles. To conclude we develop a design methodology to build, evaluate, and run HEB-based solutions for AVs. We provide architectural foundations for the second level and its implications in major areas such as communications. These foundations are then validated through simulations that incorporate new rules, obtaining valuable experimental observations. The proposed architecture has a tremendous potential to solve the scalability issue found in ULSS, enabling IoT deployments to reach its true potential.<br />El Internet de las Cosas (IoT) promete una plétora de nuevos servicios y aplicaciones habilitadas por una amplia gama de dispositivos que incluye sensores y actuadores. Para alcanzar su potencial, IoT debe superar los silos que limitan la interoperabilidad de las aplicaciones y dificultan su administración. Estos silos son el resultado de las técnicas de implementación existentes en las que cada proveedor instala su propia infraestructura y duplica el hardware, incrementando los costes. Fog Computing puede servir como la plataforma subyacente que soporte aplicaciones del IoT evitando así los silos. Cada aplicación se convierte en un sistema formado por dispositivos IoT (por ejemplo sensores y actuadores), una infraestructura (como Fog Computing) y la nube. Con el fin de mejorar varios aspectos de la vida humana, diferentes sistemas pueden interactuar para correlacionar datos obteniendo funcionalidades que no pueden lograrse por ninguno de los sistemas de forma aislada. Entonces, podemos analizar el IoT como un único sistema en lugar de una conjunción de sistemas aislados. Esta perspectiva conduce a la construcción de Ultra-Large Scale Systems (ULSS), una extensión del concepto de Systems of Systems (SoS), en varios verticales, incluidos los vehículos autónomos, Smart Cities y Smart Grids. El alcance de ULSS es vasto debido a la cantidad de dispositivos y complejo en la variedad de aplicaciones, volumen de datos y diversidad de patrones de comunicación. Para manejar esta escala y complejidad, en esta tesis proponemos Hierarchical Emergent Behaviors (HEB), un paradigma que se basa en los conceptos de comportamientos emergente y organización jerárquica. En lugar de programar explícitamente todas las situaciones posibles en el vasto espacio de escenarios presentes en los ULSS, HEB se basa en comportamientos emergentes inducidos por reglas locales que definen las interacciones de las "cosas" entre ellas y también con su entorno. Discutimos las modificaciones a las arquitecturas clásicas de IoT requeridas por HEB, así como los nuevos desafíos. Una vez que se abordan estos desafíos, como la escalabilidad y la capacidad de administración, podemos ilustrar la utilidad de HEB cuando se ocupa de un ULSS basado en IoT a través de un caso de estudio basado en Vehículos Autónomos (AV). Con este fin, diseñamos y analizamos simulaciones que demuestran su enorme potencial, ya que pequeñas modificaciones en el conjunto básico de reglas inducen comportamientos diferentes e interesantes. Luego, diseñamos un conjunto de primitivas para realizar una maniobra básica, como salir de un pelotón y maniobrar en anticipación de obstáculos más allá del alcance de los sensores de a bordo. Estas simulaciones también evalúan el impacto de una implementación de HEB asistida por nodos de Fog Computing para ampliar el alcance sensorial de los vehículos. Para concluir, desarrollamos una metodología de diseño para construir, evaluar y ejecutar soluciones basadas en HEB para AV. Brindamos fundamentos arquitectónicos para el segundo nivel de HEB y sus implicaciones en áreas importantes como las comunicaciones. Estas bases se validan a través de simulaciones que incorporan nuevas reglas, obteniendo valiosas observaciones experimentales. La arquitectura propuesta tiene un enorme potencial para resolver el problema de escalabilidad que presentan los ULSS, permitiendo que las implementaciones de IoT alcancen su verdadero potencial.
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- TDX (Tesis Doctorals en Xarxa), UPCommons. Portal del coneixement obert de la UPC, Universitat Politècnica de Catalunya (UPC), TDR. Tesis Doctorales en Red, instname
- Accession number :
- edsair.dedup.wf.001..aeade1c56bfb8ce29b93acf13395126c