Back to Search Start Over

Interval centred form for proving stability of non-linear discrete-time system

Authors :
Bourgois, Auguste
Jaulin, Luc
Lab-STICC_ENSTAB_CID_PRASYS
Laboratoire des sciences et techniques de l'information, de la communication et de la connaissance (Lab-STICC)
École Nationale d'Ingénieurs de Brest (ENIB)-Université de Bretagne Sud (UBS)-Université de Brest (UBO)-École Nationale Supérieure de Techniques Avancées Bretagne (ENSTA Bretagne)-Institut Mines-Télécom [Paris] (IMT)-Centre National de la Recherche Scientifique (CNRS)-Université Bretagne Loire (UBL)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique)
Institut Mines-Télécom [Paris] (IMT)-École Nationale d'Ingénieurs de Brest (ENIB)-Université de Bretagne Sud (UBS)-Université de Brest (UBO)-École Nationale Supérieure de Techniques Avancées Bretagne (ENSTA Bretagne)-Institut Mines-Télécom [Paris] (IMT)-Centre National de la Recherche Scientifique (CNRS)-Université Bretagne Loire (UBL)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique)
Institut Mines-Télécom [Paris] (IMT)
Source :
6th International Workshop on Symbolic-Numeric Methods for Reasoning (SNR 2020), 6th International Workshop on Symbolic-Numeric Methods for Reasoning (SNR 2020), Aug 2020, Vienne (virtual), Austria. pp.1-17
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

International audience; In this paper, we propose a new approach to prove stability of non-linear discrete-time systems. After introducing the new concept of stability contractor, we show that the interval centred form plays of fundamental role in this context and makes it possible to easily prove asymptotic stability of a discrete system. Then, we illustrate the principle of our approach through theoretical examples. Finally, we provide two practical examples using our method : proving stability of a localisation system and that of the trajectory of a robot.

Details

Language :
English
Database :
OpenAIRE
Journal :
6th International Workshop on Symbolic-Numeric Methods for Reasoning (SNR 2020), 6th International Workshop on Symbolic-Numeric Methods for Reasoning (SNR 2020), Aug 2020, Vienne (virtual), Austria. pp.1-17
Accession number :
edsair.dedup.wf.001..b18ded0edfd95d7a88135fd9b1840b66