Back to Search Start Over

A physically-based model for retrieving foliar biochemistry and leaf orientation using close-range imaging spectroscopy

Authors :
Jay, S.
Bendoula, R.
Hadoux, X.
Féret, J.B.
Gorretta, N.
Information – Technologies – Analyse Environnementale – Procédés Agricoles (UMR ITAP)
Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)
Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)
Centre for Eye Research Australia
Royal Victorian Eye and Ear Hospital
Territoires, Environnement, Télédétection et Information Spatiale (UMR TETIS)
Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-AgroParisTech-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Centre National de la Recherche Scientifique (CNRS)
Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)
Source :
Remote Sensing of Environment, Remote Sensing of Environment, Elsevier, 2016, 177, pp.220-236. ⟨10.1016/j.rse.2016.02.029⟩
Publication Year :
2016
Publisher :
HAL CCSD, 2016.

Abstract

International audience; Radiative transfer models have long been used to characterize the foliar content at the leaf and canopy levels. However, they still do not apply well to close-range imaging spectroscopy, especially because directional effects are usually not taken into account. For this purpose, we introduce a physical approach to describe and simulate the variation in leaf reflectance observed at this scale. Two parameters are thus introduced to represent (1) specular reflection at the leaf surface and (2) local leaf orientation. The model, called COSINE (ClOse-range Spectral ImagiNg of lEaves), can be coupled with a directional-hemispherical reflectance model of leaf optical properties to relate the measured reflectance to the foliar content. In this study, we show that, when combining COSINE with the PROSPECT model, the overall PROCOSINE model allows for a robust sub-millimeter retrieval of foliar content based on numerical inversion and pseudo bidirectional reflectance factor hyperspectral measurements.The relevance of the added parameters is first shown through a sensitivity analysis performed in the visible and near-infrared (VNIR) and shortwave infrared (SWIR) ranges. PROCOSINE is then validated based on VNIR and SWIR hyperspectral images of various leaf species exhibiting different surface properties. Introducing these two parameters within the inversion allows us to obtain accurate maps of PROSPECT parameters, e.g., the chlorophyll content in the VNIR range, and the equivalent water thickness and leaf mass per area in the SWIR range. Through the estimation of light incident angle, the PROCOSINE inversion also provides information on leaf orientation, which is a critical parameter in vegetation remote sensing.

Details

Language :
English
ISSN :
00344257 and 18790704
Database :
OpenAIRE
Journal :
Remote Sensing of Environment, Remote Sensing of Environment, Elsevier, 2016, 177, pp.220-236. ⟨10.1016/j.rse.2016.02.029⟩
Accession number :
edsair.dedup.wf.001..b23ad93ef53a819a7b2ba5b5e7494bf7