Back to Search Start Over

Quantum trajectory approach to chemical reaction dynamics: Application to the capture process

Authors :
Scribano, Yohann
Parlant, Gerard
Laboratoire Univers et Particules de Montpellier (LUPM)
Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Montpellier 2 - Sciences et Techniques (UM2)
AS
Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Montpellier 2 - Sciences et Techniques (UM2)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Montpellier 2 - Sciences et Techniques (UM2)
Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM)
Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC)
Clementin, Nicolas
Source :
GDR ThéMS, GDR ThéMS, Nov 2015, Orsay, France
Publication Year :
2015
Publisher :
HAL CCSD, 2015.

Abstract

National audience; In this contribution, we expose a new mixed quantum-classical reaction dynamics method whosenovelty is that it is entirely based on trajectories. Our approach rests on the concept of quantumtrajectory, which has been long been considered a philosophical and interpretative tool for quantummechanics [1]. Recently, quantum trajectories have been “rediscovered” with the goal of developinga totally new and unconventional computational method for doing quantum reaction dynamics [2,3].The most recent formulation, due to Bill Poirier and coworkers [4-6], sums up as a system ofcoupled ordinary differential equations (ODEs), that can be propagated in an extremely stable andaccurate manner. Potential advantages of this method are easily seen: (i) accurate propagation canbe extended to very large internuclear distances at low temperature; (ii) the propagation of onequantum degree of freedom together with several—possibly many—classical degrees of freedomsimply amounts to solving a “cheap” classical-like ODE system.Here we elaborate on our companion communication “Quantum trajectory capture at low and ultralowtemperature”. The above quantum trajectory approach is introduced and its physical as well ascomputational advantages are detailed, with special emphasis on the capture process.

Details

Language :
English
Database :
OpenAIRE
Journal :
GDR ThéMS, GDR ThéMS, Nov 2015, Orsay, France
Accession number :
edsair.dedup.wf.001..b594fc7e29bc9cd771c9478a526c5588