Back to Search Start Over

Bayesian inversion of a forest reflectance model using Sentinel-2 and Landsat 8 satellite images

Authors :
Schraik, Daniel
Varvia, Petri
Korhonen, Lauri
Rautiainen, Miina
Department of Built Environment
Tampere University
University of Eastern Finland
Department of Electronics and Nanoengineering
Aalto-yliopisto
Aalto University
Computing Sciences
Source :
Journal of Quantitative Spectroscopy and Radiative Transfer. 233:1-12

Abstract

openaire: EC/H2020/771049/EU//FREEDLES The inversion of reflectance models is a generalizable tool to obtain estimates on forest biophysical parameters, such as leaf area index, with theoretically little information need from a study area, instead relying on the knowledge about physical processes in the forest radiation regime. The use of prior information can greatly improve the reflectance model inversion, however, the literature does not yet provide much information on the selection of priors and their influence on the inversion results. In this study, we used a Bayesian approach to invert the PARAS forest reflectance model and retrieve leaf area index from Sentinel-2 MSI and Landsat 8 OLI multispectral satellite images. The PARAS model is based on the theory of spectral invariants, which describes the influence of wavelength-independent parameters on forest radiative transfer. The Bayesian inversion approach is highly flexible, provides uncertainty quantification, and enables the explicit incorporation of prior knowledge into the inversion process. We found that the choice of prior information is crucial in inverting a forest reflectance model to predict leaf area index. Regularizing and informative priors for leaf area index strongly improved the predictions, relative to an uninformative prior, in that they counteracted the saturation effect of the optical signal occuring at high values for leaf area index. The predictions of leaf area index were more accurate for Landsat 8 than for Sentinel-2, due to potential inconsistencies in the visible bands of Sentinel-2 in our data, and the higher spectral resolution. (C) 2019 The Authors. Published by Elsevier Ltd.

Details

Language :
English
ISSN :
00224073
Volume :
233
Database :
OpenAIRE
Journal :
Journal of Quantitative Spectroscopy and Radiative Transfer
Accession number :
edsair.dedup.wf.001..b7293b247cee95c69671e2f6ba267528
Full Text :
https://doi.org/10.1016/j.jqsrt.2019.05.013