Back to Search
Start Over
Vascular endothelial growth factor receptor 2 (VEGFR-2) signalling activity in paediatric pilocytic astrocytoma is restricted to tumour endothelial cells
- Source :
- Neuropathology and Applied Neurobiology, 37(5), 538-548. Wiley-Blackwell Publishing Ltd, Neuropathology and Applied Neurobiology, 37(5), 538-548. WILEY-BLACKWELL
- Publication Year :
- 2011
-
Abstract
- Aims: Tumours depend on angiogenesis for enhanced tumour cell survival and progression. Vascular endothelial growth factor receptor (VEGFR) signalling plays a major part in this process. Previously, we evaluated tyrosine kinase activity in paediatric brain tumour tissue lysates using a peptide microarray containing 144 different tyrosine kinase peptide substrates. When applied to paediatric pilocytic astrocytoma tissue, this analysis revealed extensive phosphorylation of VEGFR-derived peptides. The aim of the current study was to validate this result and determine the presence of VEGFR-2 activity in paediatric pilocytic astrocytoma as the main VEGFR in terms of mitogenic signalling. In addition, the localization of VEGFR1-3 mRNA expression was assessed. Methods: VEGFR-2 phosphorylation was determined by adopting a proximity ligation assay approach. Enrichment of endothelial markers and VEGFRs in tumour endothelium was determined by quantitative polymerase chain reaction (qPCR) analysis of laser-microdissected blood vessels. Results: Proximity ligation assays on tumour cryosections showed the presence of phosphorylation of VEGFR-2, which primarily localized to vascular endothelium. qPCR analysis of endothelial markers and VEGFRs showed a 13.6-fold average enrichment of VEGFR-2 expression in the laser-microdissected endothelium compared to whole tumour. Also the expression of VEGFR-1 and -3 was highly enriched in the endothelium fraction with an average fold-enrichment of 16.5 and 50.8 respectively. Conclusions: Phosphorylated VEGFR-2 is detected on endothelial cells in paediatric pilocytic astrocytoma. Furthermore, endothelial cells are the main source of VEGFR1-3 mRNA expression. This suggests a crucial role for VEGF/VEGFR-induced angiogenesis in the progression and maintenance of these tumours.
- Subjects :
- ANGIOGENIC PROFILE
kinase activity profiling
GLIOBLASTOMA-MULTIFORME
PROXIMITY LIGATION
SOLID TUMORS
BEVACIZUMAB PLUS IRINOTECAN
angiogenesis
VEGFR-2
RECURRENT GLIOBLASTOMA
YOUNG-ADULTS
embryonic structures
cardiovascular system
laser microdissection
pilocytic astrocytoma
FACTOR-C
PHASE-II TRIAL
IN-VIVO
Subjects
Details
- ISSN :
- 03051846
- Database :
- OpenAIRE
- Journal :
- Neuropathology and Applied Neurobiology, 37(5), 538-548. Wiley-Blackwell Publishing Ltd, Neuropathology and Applied Neurobiology, 37(5), 538-548. WILEY-BLACKWELL
- Accession number :
- edsair.dedup.wf.001..c373141befa0960aea74dcdf050c3f00