Back to Search Start Over

Simple Probabilistic Data-driven Model for Adaptive BCI Feedback

Authors :
Jelena Mladenović
Fabien Lotte
Jérémie Mattout
Jérémy Frey
Computer Science Faculty RAFLab, Union University, Belgrade (RAF)
Popular interaction with 3d content (Potioc)
Laboratoire Bordelais de Recherche en Informatique (LaBRI)
Université de Bordeaux (UB)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Université de Bordeaux (UB)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Centre National de la Recherche Scientifique (CNRS)
Université de Bordeaux (UB)
Centre de recherche en neurosciences de Lyon - Lyon Neuroscience Research Center (CRNL)
Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
CIC CHU Lyon (inserm)
Université de Lyon-Université de Lyon-Institut National de la Santé et de la Recherche Médicale (INSERM)
Université de Lyon
Ullo
ERC BrainConquest
European Project: 714567 ,H2020 Pilier ERC,BrainConquest(2017)
Mladenovic, Jelena
Boosting Brain-Computer Communication with high Quality User Training - BrainConquest - - H2020 Pilier ERC2017-07-01 - 2022-06-30 - 714567 - VALID
Source :
NAT 2022-3rd Neuroadaptive Technology Conference, NAT 2022-3rd Neuroadaptive Technology Conference, Oct 2022, Lubenaü, Germany, HAL
Publication Year :
2022
Publisher :
HAL CCSD, 2022.

Abstract

International audience; Due to abundant signal and user variability among others, BCIs remain difficult to control. To increase performance, adaptive methods are a necessary means to deal with such a vast spectrum of variable data. Typically, adaptive methods deal with the signal or classification corrections (adaptive spatial filters [1], co-adaptive calibration [2], adaptive classifiers [3]). As such, they do not necessarily account for the implicit alterations they perform on the feedback (in real-time), and in turn, on the user, creating yet another potential source of unpredictable variability. Namely, certain user's personality traits and states have shown to correlate with BCI performance, while feedback can impact user states [4]. For instance, altered (biased) feedback was distorting the participants' perception over their performance, influencing their feeling of control, and online performance [5]. Thus, one can assume that through feedback we might implicitly guide the user towards a desired state beneficial for BCI performance. We propose a novel, simple probabilistic, data-driven dynamic model to provide such feedback that will maximize performance.

Details

Language :
English
Database :
OpenAIRE
Journal :
NAT 2022-3rd Neuroadaptive Technology Conference, NAT 2022-3rd Neuroadaptive Technology Conference, Oct 2022, Lubenaü, Germany, HAL
Accession number :
edsair.dedup.wf.001..c627fd70bea376c5a51e3b3c34fbfb12