Back to Search Start Over

Observer design via interconnections of second-order mixed sliding-mode/linear differentiators

Authors :
Vincent Andrieu
Daniele Astolfi
Pauline Bernard
Laboratoire d'automatique, de génie des procédés et de génie pharmaceutique (LAGEPP)
Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-École Supérieure Chimie Physique Électronique de Lyon-Centre National de la Recherche Scientifique (CNRS)
Centre National de la Recherche Scientifique (CNRS)
Centre Automatique et Systèmes (CAS)
MINES ParisTech - École nationale supérieure des mines de Paris
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
Source :
International Journal of Robust and Nonlinear Control, International Journal of Robust and Nonlinear Control, Wiley, In press, HAL
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

International audience; High-gain observers and sliding mode observers are two of the most common techniques to design observers (or differentiators) for lower triangular nonlinear dynamics. While sliding mode observers can handle globally bounded nonlinear-ities, high-gain linear techniques can deal with globally Lipschitz nonlinearities. To gain in generality and avoid the usual assumption that the plant's solutions are bounded with known bound, we propose here to mix both designs in the more general case where the nonlinearities satisfy a global incremental affine bound. We inspire from the recently-developed low-power high-gain observer technique, which relies on the interconnection of several second order high-gain observers. Adding sliding-mode correction terms into this low-power structure enables to guarantee global convergence of the estimation error in finite-time with gains depending only on the parameters of the incremental affine bound of the nonlinearities. The estimation error is also proved to be uniformly stable along solutions starting from any compact sets of initial conditions.

Details

Language :
English
ISSN :
10498923 and 10991239
Database :
OpenAIRE
Journal :
International Journal of Robust and Nonlinear Control, International Journal of Robust and Nonlinear Control, Wiley, In press, HAL
Accession number :
edsair.dedup.wf.001..ccf9eb8786a431ced503258c886a4a16