Back to Search Start Over

Independent tasks on 2 resources with co-scheduling effects

Authors :
Eyraud-Dubois, Lionel
Bentes, Cristiana
Laboratoire Bordelais de Recherche en Informatique (LaBRI)
Université de Bordeaux (UB)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Centre National de la Recherche Scientifique (CNRS)
High-End Parallel Algorithms for Challenging Numerical Simulations (HiePACS)
Université de Bordeaux (UB)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Universidade do Estado do Rio de Janeiro [Rio de Janeiro] (UERJ)
Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)
Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Inria Bordeaux - Sud-Ouest
Eyraud-Dubois, Lionel
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

Concurrent kernel execution is a relatively new feature in modern GPUs, which was designed to improve hardware utilization and the overall system throughput. However, the decision on the simultaneous execution of tasks is performed by the hardware with a leftover policy, that assigns as many resources as possible for one task and then assigns the remaining resources to the next task. This can lead to unreasonable use of resources. In this work, we tackle the problem of co-scheduling for GPUs with and without preemption, with the focus on determining the kernels submission order to reduce the number of preemptions and the kernels makespan, respectively. We propose a graph-based theoretical model to build preemptive and non-preemptive schedules. We show that the optimal preemptive makespan can be computed by solving a Linear Program in polynomial time, and we propose an algorithm based on this solution which minimizes the number of preemptions. We also propose an algorithm that transforms a preemptive solution of optimal makespan into a non-preemptive solution with the smallest possible preemption overhead. We show, however, that finding the minimal amount of preemptions among all preemptive solutions of optimal makespan is a NP-hard problem, and computing the optimal non-preemptive schedule is also NP-hard. In addition, we study the non-preemptive problem, without searching first for a good preemptive solution, and present a Mixed Integer Linear Program solution to this problem. We performed experiments on real-world GPU applications and our approach can achieve optimal makespan by preempting 6 to 9% of the tasks. Our non-preemptive approach, on the other side, obtains makespan within 2.5% of the optimal preemptive schedules, while previous approaches exceed the preemptive makespan by 5 to 12%.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.dedup.wf.001..d42b1a83d1522bc13c584724809fecc7