Back to Search
Start Over
The k-tuple conjecture
- Publication Year :
- 2020
- Publisher :
- HAL CCSD, 2020.
-
Abstract
- Let $k\in\mathbb{N}, k \geq 2$, $(h_1,h_2,\cdots,h_{k-1}) \in \mathbb{N}^{k-1}$ and consider the k-tuple $\mathcal{H}_k := (0,h_1,h_2,\cdots,h_{k-1})$ with $0 < h_1 < \cdots < h_{k-1}$.Let $q \in \mathbb{P}$ and consider the set $\mathcal{B}_q := \{ b \in \mathbb{N} \, | \, \gcd(b, \displaystyle{\small \prod_{\substack{p \leq q \\ \text{p prime}}} {\normalsize p}})=1\}$.Let $q(x)$ be the largest prime number verifiying $x \geq \displaystyle \Big({\small \prod_{\substack{p \leq q(x) \\ \text{p prime}}} {\normalsize p}}\Big)$.Consider the functions $I_{\mathcal{H}_k}(x) := \#\{(b,b+h_1,b+h_2,\cdots,b+h_{k-1})\in\mathcal{B}_{q(x)}^k \, | \, b \leq x\}$ and $\pi_{\mathcal{H}_k}(x) := \#\{(p,p+h_1,p+h_2,\cdots,p+h_{k-1})\in\mathbb{P}^k \, | \, p \leq x\}$I proved the following theorem as $x \to +\infty$ : $I_{\mathcal{H}_k}(x) \sim \mathfrak{S}(\mathcal{H}_k) \, e^{-\gamma k} \, \dfrac{x}{\log(\log(x))^k}$.Where $\gamma$ is Euler–Mascheroni constant, and $\mathfrak{S}(\mathcal{H}_k) := \displaystyle\prod_{\text{p prime}}\frac{1-\frac{w(\mathcal{H}_k, p)}{p}}{(1-\frac1p)^{k}}$ and $w(\mathcal{H}_k, p)$ is the number of distinct residues $\pmod p$ in $\mathcal{H}_k$.Finally, i will explain why i conjecture that $I_{\mathcal{H}_k}(x) \sim \pi_{\mathcal{H}_k}(x) \big( \pi(q(x)) e^{-\gamma} \big)^k$.If we can prove this conjecture, then we prove immediately $\pi_{\mathcal{H}_k}(x) \sim \mathfrak{S}(\mathcal{H}_k) \dfrac{x}{\log(x)^k}$.
Details
- Language :
- English
- Database :
- OpenAIRE
- Accession number :
- edsair.dedup.wf.001..de851cd15b151e2633bb326a6929d26b