Back to Search Start Over

Activité électrique de l'interface AlN/Si: identification de l'origine principale des pertes de propagation en hyperfréquences dans les composants GaN sur Silicium

Authors :
Bah, Micka
Valente, Damien
Lesecq, Marie
Defrance, Nicolas
Garcia barros, Maxime
De Jaeger, Jean-Claude
Frayssinet, Eric
Comyn, Rémi
Ngo, Thi Huong
Alquier, Daniel
Cordier, Yvon
GREMAN (matériaux, microélectronique, acoustique et nanotechnologies) (GREMAN - UMR 7347)
Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Tours (UT)-Centre National de la Recherche Scientifique (CNRS)
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN)
Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)
Puissance - IEMN (PUISSANCE - IEMN)
Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)
Centre de recherche sur l'hétéroepitaxie et ses applications (CRHEA)
Université Nice Sophia Antipolis (... - 2019) (UNS)
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
This work was supported by the technology facility network RENATECH and the French National Research Agency (ANR) through the projects ASTRID GoSiMP (ANR-16-ASTR-0006-01) and the 'Investissement d’Avenir' program GaNeX (ANR-11-LABX-0014).
Renatech Network
ANR-16-ASTR-0006,GoSiMP,Optimisations combinées par l'épitaxie pour composants hyperfréquences de puissance GaN sur Silicium(2016)
ANR-11-LABX-0014,GANEX,Réseau national sur GaN(2011)
Université de Tours (UT)-Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
Université Nice Sophia Antipolis (1965 - 2019) (UNS)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Tours-Centre National de la Recherche Scientifique (CNRS)
Source :
Scientific Reports, Scientific Reports, Nature Publishing Group, 2020, 10 (1), pp.14166. ⟨10.1038/s41598-020-71064-0⟩, Scientific Reports, 2020, 10 (1), pp.14166. ⟨10.1038/s41598-020-71064-0⟩
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

International audience; AlN nucleation layers are the basement of GaN-on-Si structures grown for light-emitting diodes, high frequency telecommunication and power switching systems. In this context, our work aims to understand the origin of propagation losses in GaN-on-Si High Electron Mobility Transistors at microwaves frequencies, which are critical for efficient devices and circuits. AlN/Si structures are grown by Metalorganic Vapor Phase Epitaxy. Acceptor dopant in-diffusion (Al and Ga) into the Si substrate is studied by Secondary Ion Mass Spectroscopy and is mainly located in the first 200 nm beneath the interface. In this region, an acceptor concentration of a few 1018cm-3 is estimated from Capacitance-Voltage (C-V) measurements while the volume hole concentration of several 1017 cm-3 is deduced from sheet resistance. Furthermore, the combination of scanning capacitance microscopy and scanning spreading resistance microscopy enables the 2D profiling of both the p-type conductive channel and the space charge region beneath the AlN/Si interface. We demonstrate that samples grown at lower temperature exhibit a p-doped conductive channel over a shallower depth which explains lower propagation losses in comparison with those synthesized at higher temperature. Our work highlights that this p-type channel can increase the propagation losses in the high-frequency devices but also that a memory effect associated with the previous sample growths with GaN can noticeably affect the physical properties in absence of proper reactor preparation. Hence, monitoring the acceptor dopant in-diffusion beneath the AlN/Si interface is crucial for achieving efficient GaN-on-Si microwave power devices.

Details

Language :
English
ISSN :
20452322
Database :
OpenAIRE
Journal :
Scientific Reports, Scientific Reports, Nature Publishing Group, 2020, 10 (1), pp.14166. ⟨10.1038/s41598-020-71064-0⟩, Scientific Reports, 2020, 10 (1), pp.14166. ⟨10.1038/s41598-020-71064-0⟩
Accession number :
edsair.dedup.wf.001..ea53bde9a96cd8b2fe3e4812f82e32b3