Back to Search
Start Over
Maximum likelihood based discriminative training of acoustic models
- Source :
- Recercat. Dipósit de la Recerca de Catalunya, instname, UPCommons. Portal del coneixement obert de la UPC, Universitat Politècnica de Catalunya (UPC)
- Publication Year :
- 1995
- Publisher :
- European Speech Communication Association (ESCA), 1995.
-
Abstract
- In this paper, a framework for discriminative training of acoustic models based on Generalised Probabilistic Descent (GPD) method is presented. The key feature of our proposal, Maximum Likelihood based Discriminative Training of Acoustic Models (MLDT), is the use of maximum likelihood trained HMM's instead of the original speech signal. We focus our attention in performing discriminative training applied to a discrete hidden Markov models continuos speech recogniser, achieving a 4.6% error rate reduction on a Spanish speaker-independent phoneme recognition task.
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Recercat. Dipósit de la Recerca de Catalunya, instname, UPCommons. Portal del coneixement obert de la UPC, Universitat Politècnica de Catalunya (UPC)
- Accession number :
- edsair.dedup.wf.001..eba1557d5db5b2163a047987f1bba4e4