Back to Search Start Over

Multi-Scale Evaluation of the TSEB Model over a Complex Agricultural Landscape in Morocco

Authors :
Jamal Elfarkh
Jamal Ezzahar
Salah Er-Raki
Vincent Simonneaux
Bouchra Ait Hssaine
Said Rachidi
Aurore Brut
Vincent Rivalland
Said Khabba
Abdelghani Chehbouni
Lionel Jarlan
Laboratory of Processes, Metrology, Materials for Energy and Environment ( LP2M2E)
Université Cadi Ayyad [Marrakech] (UCA)
Département GIRT/Laboratoire MISC
Ecole Nationale des Sciences Appliquées
Université Cadi Ayyad [Marrakech] (UCA)-Université Cadi Ayyad [Marrakech] (UCA)
Center for Remote Sensing Applications
Mohammed VI Polytechnic University [Marocco] (UM6P)
Centre d'études spatiales de la biosphère (CESBIO)
Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP)
Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)
Agence de Bassin Hydraulique du Tensift
Laboratoire de Mécanique des Fluides et Energétique (LMFE)
Faculté des Sciences Semlalia Marrakech
CNRST SAGESSE project European CommissionEuropean Commission Joint Research Centre645642823965PHC TBK/18/61German Cooperation Giz ERANETMED03-62 CHAAMS
Université Mohammed VI Polytechnique [Ben Guerir] (UM6P)
Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
Faculté des Sciences Semlalia [Marrakech]
Source :
Remote Sensing, Remote Sensing, MDPI, 2020, 12 (7), pp.1181. ⟨10.3390/rs12071181⟩, Remote Sensing, 2020, 12 (7), pp.1181. ⟨10.3390/rs12071181⟩, Remote Sensing, Vol 12, Iss 1181, p 1181 (2020)
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

An accurate assessment of evapotranspiration (ET) is crucially needed at the basin scale for studying the hydrological processes and water balance especially from upstream to downstream. In the mountains, this term is poorly understood because of various challenges, including the vegetation complexity, plant diversity, lack of available data and because the in situ direct measurement of ET is difficult in complex terrain. The main objective of this work was to investigate the potential of a Two-Source-Energy-Balance model (TSEB) driven by the Landsat and MODIS data for estimating ET over a complex mountain region. The complexity is associated with the type of the vegetation canopy as well as the changes in topography. For validating purposes, a large-aperture scintillometer (LAS) was set up over a heterogeneous transect of about 1.4 km to measure sensible (H) and latent heat (LE) fluxes. Additionally, two towers of eddy covariance (EC) systems were installed along the LAS transect. First, the model was tested at the local scale against the EC measurements using multi-scale remote sensing (MODIS and Landsat) inputs at the satellite overpasses. The obtained averaged values of the root mean square error (RMSE) and correlation coefficient (R) were about 72.4 Wm−2 and 0.79 and 82.0 Wm−2 and 0.52 for Landsat and MODIS data, respectively. Secondly, the potential of the TSEB model for evaluating the latent heat fluxes at large scale was investigated by aggregating the derived parameters from both satellites based on the LAS footprint. As for the local scale, the comparison of the latent heat fluxes simulated by TSEB driven by Landsat data performed well against those measured by the LAS (R = 0.69, RMSE = 68.0 Wm−2), while slightly more scattering was observed when MODIS products were used (R = 0.38, RMSE = 99.8 Wm−2). Based on the obtained results, it can be concluded that (1) the TSEB model can be fairly used to estimate the evapotranspiration over the mountain regions; and (2) medium- to high-resolution inputs are a better option than coarse-resolution products for describing this kind of complex terrain.

Details

Language :
English
ISSN :
20724292
Database :
OpenAIRE
Journal :
Remote Sensing, Remote Sensing, MDPI, 2020, 12 (7), pp.1181. ⟨10.3390/rs12071181⟩, Remote Sensing, 2020, 12 (7), pp.1181. ⟨10.3390/rs12071181⟩, Remote Sensing, Vol 12, Iss 1181, p 1181 (2020)
Accession number :
edsair.dedup.wf.001..ed3b62cda6381c81e5cd1689ba18dc5f
Full Text :
https://doi.org/10.3390/rs12071181⟩