Back to Search Start Over

A microphysics guide to cirrus – Part 2: Climatologies of clouds and humidity from observations

Authors :
Krämer, Martina
Rolf, Christian
Spelten, Nicole
Afchine, Armin
Fahey, David
Jensen, Eric
Khaykin, Sergey
Kuhn, Thomas
Lawson, Paul
Lykov, Alexey
Pan, Laura L.
Riese, Martin
Rollins, Andrew
Stroh, Fred
Thornberry, Troy
Wolf, Veronika
Woods, Sarah
Spichtinger, Peter
Quaas, Johannes
Sourdeval, Odran
Institut für Energie- und Klimaforschung - Stratosphäre (IEK-7)
Forschungszentrum Jülich GmbH | Centre de recherche de Juliers
Helmholtz-Gemeinschaft = Helmholtz Association-Helmholtz-Gemeinschaft = Helmholtz Association
Institute for Atmospheric Physics [Mainz] (IPA)
Johannes Gutenberg - Universität Mainz (JGU)
NOAA Earth System Research Laboratory (ESRL)
National Oceanic and Atmospheric Administration (NOAA)
Atmospheric Chemistry Observations and Modeling Laboratory (ACOML)
National Center for Atmospheric Research [Boulder] (NCAR)
TROPO - LATMOS
Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS)
Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)
Luleå University of Technology (LUT)
SPEC, Inc.
Central Aerological Observatory (CAO)
Russian Federal Service for Hydrometeorology and Environmental Monitoring (Roshydromet)
Institut für Physik der Atmosphäre [Mainz] (IPA)
Leipziger Institut für Meteorologie (LIM)
Universität Leipzig [Leipzig]
Laboratoire d’Optique Atmosphérique - UMR 8518 (LOA)
Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)
Johannes Gutenberg - Universität Mainz = Johannes Gutenberg University (JGU)
Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Universität Leipzig
Université de Lille
CNRS
Institut für Energie- und Klimaforschung - Stratosphäre [IEK-7]
Source :
Atmospheric Chemistry and Physics, Atmospheric Chemistry and Physics, European Geosciences Union, 2020, 20 (21), pp.12569-12608. ⟨10.5194/acp-20-12569-2020⟩, Atmospheric chemistry and physics 20(21), 12569-12608 (2020). doi:10.5194/acp-20-12569-2020, Atmospheric Chemistry and Physics, 2020, 20 (21), pp.12569-12608. ⟨10.5194/acp-20-12569-2020⟩
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

This study presents airborne in situ and satellite remote sensing climatologies of cirrus clouds and humidity. The climatologies serve as a guide to the properties of cirrus clouds, with the new in situ database providing detailed insights into boreal midlatitudes and the tropics, while the satellite-borne data set offers a global overview. To this end, an extensive, quality-checked data archive, the Cirrus Guide II in situ database, is created from airborne in situ measurements during 150 flights in 24 campaigns. The archive contains meteorological parameters, ice water content (IWC), ice crystal number concentration (Nice), ice crystal mean mass radius (Rice), relative humidity with respect to ice (RHice), and water vapor mixing ratio (H2O) for each of the flights. Depending on the parameter, the database has been extended by about a factor of 5–10 compared to earlier studies. As one result of our investigation, we show that the medians of Nice, Rice, and RHice have distinct patterns in the IWC–T parameter space. Lookup tables of these variables as functions of IWC and T can be used to improve global model cirrus representation and remote sensing retrieval methods. Another outcome of our investigation is that across all latitudes, the thicker liquid-origin cirrus predominate at lower altitudes, while at higher altitudes the thinner in situ-origin cirrus prevail. Further, examination of the radiative characteristics of in situ-origin and liquid-origin cirrus shows that the in situ-origin cirrus only slightly warm the atmosphere, while liquid-origin cirrus have a strong cooling effect. An important step in completing the Cirrus Guide II is the provision of the global cirrus Nice climatology, derived by means of the retrieval algorithm DARDAR-Nice from 10 years of cirrus remote sensing observations from satellite. The in situ measurement database has been used to evaluate and improve the satellite observations. We found that the global median Nice from satellite observations is almost 2 times higher than the in situ median and increases slightly with decreasing temperature. Nice medians of the most frequently occurring cirrus sorted by geographical regions are highest in the tropics, followed by austral and boreal midlatitudes, Antarctica, and the Arctic. Since the satellite climatologies enclose the entire spatial and temporal Nice occurrence, we could deduce that half of the cirrus are located in the lowest, warmest (224–242 K) cirrus layer and contain a significant amount of liquid-origin cirrus. A specific highlight of the study is the in situ observations of cirrus and humidity in the Asian monsoon anticyclone and the comparison to the surrounding tropics. In the convectively very active Asian monsoon, peak values of Nice and IWC of 30 cm−3 and 1000 ppmv are detected around the cold point tropopause (CPT). Above the CPT, ice particles that are convectively injected can locally add a significant amount of water available for exchange with the stratosphere. We found IWCs of up to 8 ppmv in the Asian monsoon in comparison to only 2 ppmv in the surrounding tropics. Also, the highest RHice values (120 %–150 %) inside of clouds and in clear sky are observed around and above the CPT. We attribute this to the high H2O mixing ratios (typically 3–5 ppmv) observed in the Asian monsoon compared to 1.5 to 3 ppmv found in the tropics. Above the CPT, supersaturations of 10 %–20 % are observed in regions of weak convective activity and up to about 50 % in the Asian monsoon. This implies that the water available for transport into the stratosphere might be higher than the expected saturation value.

Details

Language :
English
ISSN :
16807316 and 16807324
Database :
OpenAIRE
Journal :
Atmospheric Chemistry and Physics, Atmospheric Chemistry and Physics, European Geosciences Union, 2020, 20 (21), pp.12569-12608. ⟨10.5194/acp-20-12569-2020⟩, Atmospheric chemistry and physics 20(21), 12569-12608 (2020). doi:10.5194/acp-20-12569-2020, Atmospheric Chemistry and Physics, 2020, 20 (21), pp.12569-12608. ⟨10.5194/acp-20-12569-2020⟩
Accession number :
edsair.dedup.wf.001..ef8ce8eceb5c13354a33f5ba763e81ed
Full Text :
https://doi.org/10.5194/acp-20-12569-2020⟩