Back to Search
Start Over
The Maximum Principles for Stochastic Recursive Optimal Control Problems Under Partial Information
- Source :
- IEEE Transactions on Automatic Control. 54:1230-1242
- Publication Year :
- 2009
- Publisher :
- Institute of Electrical and Electronics Engineers (IEEE), 2009.
-
Abstract
- A maximum principle for partially observed stochastic recursive optimal control problems is obtained under the assumption that control domains are not necessarily convex and forward diffusion coefficients do not contain control variables. Such kind of recursive optimal control problems have wide applications in finance and economics such as recursive utility optimization and principal-agent problems. By virtue of a classical spike variational approach and a filtering technique, the maximum principle is obtained, and the related adjoint processes are characterized by the solutions of forward-backward stochastic differential equations in finite-dimensional spaces. Then our theoretical results are applied to study a partially observed linear-quadratic recursive optimal control problem. In addition, for the case with initial and terminal state constraints, the corresponding maximum principle is also obtained by using Ekeland's variational principle.
- Subjects :
- Stochastic control
μ operator
Mathematical optimization
Nonlinear system
Stochastic differential equation
Maximum principle
Control and Systems Engineering
Variational principle
Calculus of variations
Electrical and Electronic Engineering
Optimal control
Computer Science Applications
Mathematics
Subjects
Details
- ISSN :
- 15582523 and 00189286
- Volume :
- 54
- Database :
- OpenAIRE
- Journal :
- IEEE Transactions on Automatic Control
- Accession number :
- edsair.doi...........000d51f36f08c2b21dc364b3e19f6f50
- Full Text :
- https://doi.org/10.1109/tac.2009.2019794