Back to Search
Start Over
Investigation of gasoline containing GTL naphtha in a spark ignition engine at full load conditions
- Source :
- Fuel. 194:436-447
- Publication Year :
- 2017
- Publisher :
- Elsevier BV, 2017.
-
Abstract
- Gas-to-liquid (GTL) naphtha can be used as a gasoline blend component, and the challenge of its low octane rating is solved by using ethanol as an octane booster. However, currently there is little knowledge available about the performance of gasolines containing GTL naphtha in spark ignition engines. The objective of this work is to assess full load performance of gasoline fuels containing GTL naphtha in a modern spark ignition engine. In this study, four new gasoline fuels containing up to 23.5 vol.% GTL naphtha, and a standard EN228 gasoline fuel (reference fuel) were tested. These new gasoline fuels all had similar octane rating with that of the standard EN228 gasoline fuel. The experiments were conducted in an AVL single cylinder spark ignition research engine under full load conditions in the engine speed range of 1000–4500 rpm. Two modern engine configurations, a boosted direct injection (DI) and a port fuel injection (PFI), were used. A comprehensive thermodynamic analysis was carried out to correlate experiment data with fuel properties. The results show that, at the full load operating conditions the combustion characteristics and emissions of those gasoline fuels containing GTL naphtha were comparable to those of the standard EN228 gasoline fuel. Volumetric fuel consumption of fuels with high GTL naphtha content was higher due to the need of adding more ethanol to offset the reduced octane rating caused by GTL naphtha. Results also indicate that, compared to the conventional compliant E228 gasoline fuel, lower particulate emissions were observed in gasoline fuels containing up to 15.4 vol.% GTL naphtha.
- Subjects :
- Waste management
020209 energy
General Chemical Engineering
Organic Chemistry
Energy Engineering and Power Technology
02 engineering and technology
law.invention
Ignition system
Gas to liquids
chemistry.chemical_compound
020303 mechanical engineering & transports
Fuel Technology
0203 mechanical engineering
chemistry
law
Spark-ignition engine
0202 electrical engineering, electronic engineering, information engineering
Fuel efficiency
Environmental science
Octane rating
Gasoline
Naphtha
Octane
Subjects
Details
- ISSN :
- 00162361
- Volume :
- 194
- Database :
- OpenAIRE
- Journal :
- Fuel
- Accession number :
- edsair.doi...........00a963269777bb03d8e0d88154d24605
- Full Text :
- https://doi.org/10.1016/j.fuel.2017.01.042