Back to Search
Start Over
In vitro estimation of the energy loss through turbulence in a porcine aortic valve stenosis model and silicone ascending aorta phantom using backlight particle tracking velocimetry
- Source :
- European Heart Journal. 42
- Publication Year :
- 2021
- Publisher :
- Oxford University Press (OUP), 2021.
-
Abstract
- Introduction Patients suffering from low-flow, low-gradient aortic stenosis present a decreased stroke volume due to decreased contraction or relaxation function of the left ventricle. As a low stroke volume tends to cause a low transvalvular flow, transvalvular pressure gradient (TVPG) and effective orifice area, the clinician cannot rely on those parameters with confidence for the evaluation of aortic stenosis severity. Hence new diagnostic parameters have to be developed. Energy loss through turbulence associated with aortic stenosis represented the wasted left ventricle work. Currently, echocardiographic measurement of the turbulence intensity is not validated for clinical evaluations of aortic stenosis. Methods Two porcine aortic valves were harvested and inserted in a flow loop that replicates the pulsatile flow of the heart. A stiffening of the valves was achieved by treating them with formaldehyde. The stiffening was externally confirmed by a custom-made force-displacement device quantifying the rigidity of the leaflet yielding two stiffness grades per valve. Each valve was tested under three different mean flow rates (1, 2.5, and 4 l/min) at each of the two stiffness grades. Moreover the pressure in the left ventricle chamber and in the aortic chamber was recorded to calculate the TVPG. Particle tracking velocimetry measurements into the transparent silicone ascending aorta phantom allowed the computation of the turbulent kinetic energy (TKE), to evaluate the energy loss due to turbulence. Results We could confirm the enhanced rigidity of the valve leaflets with our custom device (data not shown) and measure a consistent increase in TVPG across all mean flow rates between the two stiffness grades. Moreover, an explicit increase of the TKE in the aortic phantom could be measured after the stiffening process (73.1% under 1 l/min, and 43% under both 2.5 and 4 l/min). In addition, a good correlation (R = 0.86) between the mean TVPG and the TKE was found. Conclusions This project demonstrated the possibility of quantifying the energy loss attributed to turbulence for porcine valves in vitro for native and added stiffness grade. This project lays the foundation for the development of a new diagnostic tool for the assessment of stenosis severity in patients with low-flow, low-gradient aortic stenosis in cardiac imaging tool such as echocardiography. Funding Acknowledgement Type of funding sources: None. TVPG and its correlation with TKEIntensity graphs of the TKE
Details
- ISSN :
- 15229645 and 0195668X
- Volume :
- 42
- Database :
- OpenAIRE
- Journal :
- European Heart Journal
- Accession number :
- edsair.doi...........01607fd1384218351b49a70df13a8537
- Full Text :
- https://doi.org/10.1093/eurheartj/ehab724.0122