Back to Search Start Over

KORÁNYI’S LEMMA FOR HOMOGENEOUS SIEGEL DOMAINS OF TYPE II. APPLICATIONS AND EXTENDED RESULTS

Authors :
Cyrille Nana
Hideyuki Ishi
David Békollé
Source :
Bulletin of the Australian Mathematical Society. 90:77-89
Publication Year :
2014
Publisher :
Cambridge University Press (CUP), 2014.

Abstract

We show that the modulus of the Bergman kernel $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}B(z, \zeta )$ of a general homogeneous Siegel domain of type II is ‘almost constant’ uniformly with respect to $z$ when $\zeta $ varies inside a Bergman ball. The control is expressed in terms of the Bergman distance. This result was proved by A. Korányi for symmetric Siegel domains of type II. Subsequently, R. R. Coifman and R. Rochberg used it to establish an atomic decomposition theorem and an interpolation theorem by functions in Bergman spaces $A^p$ on these domains. The atomic decomposition theorem and the interpolation theorem are extended here to the general homogeneous case using the same tools. We further extend the range of exponents $p$ via functional analysis using recent estimates.

Details

ISSN :
17551633 and 00049727
Volume :
90
Database :
OpenAIRE
Journal :
Bulletin of the Australian Mathematical Society
Accession number :
edsair.doi...........01de08df589d3950e980304e13bdb9c3
Full Text :
https://doi.org/10.1017/s0004972714000033