Back to Search
Start Over
KORÁNYI’S LEMMA FOR HOMOGENEOUS SIEGEL DOMAINS OF TYPE II. APPLICATIONS AND EXTENDED RESULTS
- Source :
- Bulletin of the Australian Mathematical Society. 90:77-89
- Publication Year :
- 2014
- Publisher :
- Cambridge University Press (CUP), 2014.
-
Abstract
- We show that the modulus of the Bergman kernel $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}B(z, \zeta )$ of a general homogeneous Siegel domain of type II is ‘almost constant’ uniformly with respect to $z$ when $\zeta $ varies inside a Bergman ball. The control is expressed in terms of the Bergman distance. This result was proved by A. Korányi for symmetric Siegel domains of type II. Subsequently, R. R. Coifman and R. Rochberg used it to establish an atomic decomposition theorem and an interpolation theorem by functions in Bergman spaces $A^p$ on these domains. The atomic decomposition theorem and the interpolation theorem are extended here to the general homogeneous case using the same tools. We further extend the range of exponents $p$ via functional analysis using recent estimates.
Details
- ISSN :
- 17551633 and 00049727
- Volume :
- 90
- Database :
- OpenAIRE
- Journal :
- Bulletin of the Australian Mathematical Society
- Accession number :
- edsair.doi...........01de08df589d3950e980304e13bdb9c3
- Full Text :
- https://doi.org/10.1017/s0004972714000033