Back to Search Start Over

Quantum efficiency of a back-illuminated CCD imager: an optical approach

Authors :
Michael Levi
Nicholas P. Palaio
R.J. Stover
Mingzhi Wei
Saul Perlmutter
Donald E. Groom
Steven E. Holland
Source :
SPIE Proceedings.
Publication Year :
1999
Publisher :
SPIE, 1999.

Abstract

We have developed an optical approach for modeling the quantum efficiency (QE) of back-illuminated CCD optical imagers for astronomy. Beyond its simplicity, it has the advantage of providing a complete fringing description for a real system. Standard thin-film calculations are extended by (a) considering the CCD itself as a thin film, and (b) treating the refractive index as complex. The QE is approximated as the fraction of the light neither transmitted nor reflected, which basically says that all absorbed photons produce e-h pairs and each photoproduced e or h is collected. Near-surface effects relevant to blue response must still be treated by standard semiconductor modeling methods. A simple analytic expression describes the QE of a CCD without antireflective (AR) coatings. With AR coatings the system is more easily described by transfer matrix methods. A two-layer AR coating is tuned to give a reasonable description of standard thinned CCDs, while the measured QE of prototype LBNL totally depleted thick CCDs is well described with no adjustable parameters. Application to the new LBNL CCDs indicates that these device swill have QE > 70 percent at (lambda) equals 1000 nm and negligible fringing in optical system faster than approximately f4.0.© (1999) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

Details

ISSN :
0277786X
Database :
OpenAIRE
Journal :
SPIE Proceedings
Accession number :
edsair.doi...........0205f58943223185712d115f73851db5
Full Text :
https://doi.org/10.1117/12.347079