Back to Search Start Over

The effects of worms, clay and biochar on CO2 emissions during production and soil application of co-composts

Authors :
Cornelia Rumpel
Justine Barthod
Marie-France Dignac
Remigio Paradelo
Source :
SOIL. 2:673-683
Publication Year :
2016
Publisher :
Copernicus GmbH, 2016.

Abstract

In this study we evaluated CO2 emissions during composting of green wastes with clay and/or biochar in the presence and absence of worms (species of the genus Eisenia), as well as the effect of those amendments on carbon mineralization after application to soil. We added two different doses of clay, biochar or their mixture to pre-composted green wastes and monitored carbon mineralization over 21 days in the absence or presence of worms. The resulting co-composts and vermicomposts were then added to a loamy Cambisol and the CO2 emissions were monitored over 30 days in a laboratory incubation. Our results indicated that the addition of clay or clay/biochar mixture reduced carbon mineralization during co-composting without worms by up to 44 %. In the presence of worms, CO2 emissions during composting increased for all treatments except for the low clay dose. The effect of the amendments on carbon mineralization after addition to soil was small in the short term. Overall, composts increased OM mineralization, whereas vermicomposts had no effect. The presence of biochar reduced OM mineralization in soil with respect to compost and vermicompost without additives, whereas clay reduced mineralization only in the composts. Our study indicates a significant role of the conditions of composting on mineralization in soil. Therefore, the production of a low CO2 emission amendment requires optimization of feedstocks, co-composting agents and worm species.

Details

ISSN :
2199398X
Volume :
2
Database :
OpenAIRE
Journal :
SOIL
Accession number :
edsair.doi...........037947c48b181a9245319d013647ba25
Full Text :
https://doi.org/10.5194/soil-2-673-2016