Back to Search Start Over

Web-Based Sea Level Change Simulation System Using PNG Elevation Tiles and Smart Tile Architecture

Authors :
Koki Iwao
Yoshiharu Nishioka
Kaoru Kitao
Source :
Journal of Geographic Information System. 12:291-301
Publication Year :
2020
Publisher :
Scientific Research Publishing, Inc., 2020.

Abstract

We have developed a web-based processing system that can simulate positive and negative sea level changes globally by selecting the best Digital Elevation Model (DEM) for a target region from multiple DEMs. A PNG elevation tile format is used as the DEM format, which reduces the DEM data size. The PNG tile format implements client-based processing, and the DEM data are provided from different websites. In addition, the smart tile architecture is adopted, which enables on-demand simulation by adding a tile conversion process (i.e., a DEM selection process) during image drawing by using JavaScript. To demonstrate the system, we have employed three DEMs, i.e., the Geospatial Information Authority of Japan (GSI) map (~10-m resolution), the ASTER Global Digital Elevation Models (ASTER GDEM version 3) as global land area (~30-m resolution), and the General Bathymetric Chart of the Oceans as bathymetric data (~1000-m resolution). The ASTER Global Water Bodies Database is also used in the data selection process. The GSI provides their DEM in a PNG elevation tile format, and the other data are provided by the Geological Survey of Japan in PNG elevation tile format. We assume the current DEM sea level as 0 m, and the sea level can be changed to an arbitrary integer value (−10,000 to 10,000 m). Combining ASTER GDEM for land and GEBCO for sea makes it possible to target DEM of the whole earth. Moreover, it was shown that if a higher resolution DEM is available, it is possible to combine the higher resolution DEM in that area. The combining the PNG elevation tile format with the smart tile architecture demonstrates the possibilities of a client-based web processing service like that of the server-based OGC Web Processing Service.

Details

ISSN :
21511969 and 21511950
Volume :
12
Database :
OpenAIRE
Journal :
Journal of Geographic Information System
Accession number :
edsair.doi...........0500466d92ce68e2cecdc371cbeafab6