Back to Search
Start Over
Multiplicities of Some Maximal Dominant Weights of the $\widehat {s\ell }(n)$-Modules V (kΛ0)
- Source :
- Algebras and Representation Theory. 25:477-490
- Publication Year :
- 2021
- Publisher :
- Springer Science and Business Media LLC, 2021.
-
Abstract
- For n ≥ 2 consider the affine Lie algebra $\widehat {s\ell }(n)$ with simple roots {αi∣0 ≤ i ≤ n − 1}. Let $V(k{\Lambda }_{0}), k \in \mathbb {Z}_{\geq 1}$ denote the integrable highest weight $\widehat {s\ell }(n)$ -module with highest weight kΛ0. It is known that there are finitely many maximal dominant weights of V (kΛ0). Using the crystal base realization of V (kΛ0) and lattice path combinatorics we examine the multiplicities of a large set of maximal dominant weights of the form $k{\Lambda }_{0} - \lambda ^{\ell }_{a,b}$ where $ \lambda ^{\ell }_{a,b} = \ell \alpha _{0} + (\ell -b)\alpha _{1} + (\ell -(b+1))\alpha _{2} + {\cdots } + \alpha _{\ell -b} + \alpha _{n-\ell +a} + 2\alpha _{n - \ell +a+1} + {\ldots } + (\ell -a)\alpha _{n-1}$ , and k ≥ a + b, $a,b \in \mathbb {Z}_{\geq 1}$ , $\max \limits \{a,b\} \leq \ell \leq \left \lfloor \frac {n+a+b}{2} \right \rfloor -1 $ . We obtain two formulae to obtain these weight multiplicities - one in terms of certain standard Young tableaux and the other in terms of certain pattern-avoiding permutations.
- Subjects :
- General Mathematics
010102 general mathematics
0211 other engineering and technologies
021107 urban & regional planning
02 engineering and technology
Lattice path
Lambda
01 natural sciences
Affine Lie algebra
Combinatorics
Young tableau
0101 mathematics
Realization (systems)
Mathematics
Crystal base
Subjects
Details
- ISSN :
- 15729079 and 1386923X
- Volume :
- 25
- Database :
- OpenAIRE
- Journal :
- Algebras and Representation Theory
- Accession number :
- edsair.doi...........05c24abba2ffe0f05dfb563e2eb57eab
- Full Text :
- https://doi.org/10.1007/s10468-021-10031-3