Back to Search Start Over

Evolution of dike opening during the March 2011 Kamoamoa fissure eruption, Kīlauea Volcano, Hawai'i

Authors :
Eric J. Fielding
Zhen Liu
Scott Hensley
Susan Owen
Sang-Ho Yun
Asta Miklius
Michael P. Poland
Tim R. Orr
Walter Szeliga
Paul Lundgren
Akiko Tanaka
Source :
Journal of Geophysical Research: Solid Earth. 118:897-914
Publication Year :
2013
Publisher :
American Geophysical Union (AGU), 2013.

Abstract

[1] The 5–9 March 2011 Kamoamoa fissure eruption along the east rift zone of Kīlauea Volcano, Hawai`i, followed months of pronounced inflation at Kīlauea summit. We examine dike opening during and after the eruption using a comprehensive interferometric synthetic aperture radar (InSAR) data set in combination with continuous GPS data. We solve for distributed dike displacements using a whole Kīlauea model with dilating rift zones and possibly a deep decollement. Modeled surface dike opening increased from nearly 1.5 m to over 2.8 m from the first day to the end of the eruption, in agreement with field observations of surface fracturing. Surface dike opening ceased following the eruption, but subsurface opening in the dike continued into May 2011. Dike volumes increased from 15, to 16, to 21 million cubic meters (MCM) after the first day, eruption end, and 2 months following, respectively. Dike shape is distinctive, with a main limb plunging from the surface to 2–3 km depth in the up-rift direction toward Kīlauea's summit, and a lesser projection extending in the down-rift direction toward Pu`u `Ō`ō at 2 km depth. Volume losses beneath Kīlauea summit (1.7 MCM) and Pu`u `Ō`ō (5.6 MCM) crater, relative to dike plus erupted volume (18.3 MCM), yield a dike to source volume ratio of 2.5 that is in the range expected for compressible magma without requiring additional sources. Inflation of Kīlauea's summit in the months before the March 2011 eruption suggests that the Kamoamoa eruption resulted from overpressure of the volcano's magmatic system.

Details

ISSN :
21699313
Volume :
118
Database :
OpenAIRE
Journal :
Journal of Geophysical Research: Solid Earth
Accession number :
edsair.doi...........0692f5b045a57b0771afa2805f1acfb2
Full Text :
https://doi.org/10.1002/jgrb.50108