Back to Search Start Over

One-step synthesis of tunable nitrogen-doped graphene from graphene oxide and its high performance field emission properties

Authors :
Shuxian Yu
Xiaolei Zhang
Siyu Wu
Kun Zhang
Junchao Qian
Yenan Song
Yijun Chen
Zhuo Sun
Xinliang Yang
Renjie Tang
Wenjie Wu
Yan Shen
Source :
Vacuum. 168:108817
Publication Year :
2019
Publisher :
Elsevier BV, 2019.

Abstract

Simultaneous reduction, repairing and doping of graphene oxide has been realized by the chemical vapor deposition method, using acetonitrile as a nitrogen source. A step-wise increase of acetonitrile partial pressure from 15 to 90 Pa results in nitrogen doped graphene (NG) with gradually tuning N-doping concentration from 0.38 to 0.66 at% and systematically rising graphite-N ratio from 23.25 to 45.39%, which in turn modulates field emission performance and enhance the stability. Raman spectroscopy and X-ray photoelectron spectroscopy suggest pyrrolic-N and pyridinic-N doping bring defects, while defects decrease as N-doping concentration increases due to the rising of graphite-N ratio. Proper defects may increase emission site density and N-doping can reduce work function. When N-doping concentration is controlled at 0.42 at%, NG exhibits the considerable decreasing of turn-on field from 3.35 to 2.18 V/μm at the emission current of 10 μA/cm2 and increasing of field enhancement factor from 1835 to 2967. It also reveals a good field emission stability with no degradation, which is superior to pristine reduced GO emitters. It is suggested the NG with tuning concentration of three type nitrogen emitter is a widely candidate for various field emission devices and applications.

Details

ISSN :
0042207X
Volume :
168
Database :
OpenAIRE
Journal :
Vacuum
Accession number :
edsair.doi...........0753665896c1ddf90f2621de87640809
Full Text :
https://doi.org/10.1016/j.vacuum.2019.108817