Back to Search
Start Over
On the pseudorandom properties of $ k $-ary Sidel'nikov sequences
- Source :
- Advances in Mathematics of Communications. 17:1072-1085
- Publication Year :
- 2023
- Publisher :
- American Institute of Mathematical Sciences (AIMS), 2023.
-
Abstract
- In 2002 Mauduit and Sarkozy started to study finite sequences of \begin{document}$ k $\end{document} symbols \begin{document}$ E_{N} = \left(e_{1},e_{2},\cdots,e_{N}\right)\in \mathcal{A}^{N}, $\end{document} where \begin{document}$ \mathcal{A} = \left\{a_{1},a_{2},\cdots,a_{k}\right\}(k\in \mathbb{N},k\geq 2) $\end{document} is a finite set of \begin{document}$ k $\end{document} symbols. Later many pseudorandom sequences of \begin{document}$ k $\end{document} symbols have been given and studied by using number theoretic methods. In this paper we study the pseudorandom properties of the \begin{document}$ k $\end{document} -ary Sidel'nikov sequences with length \begin{document}$ q-1 $\end{document} by using the estimates for certain character sums with exponential function, where \begin{document}$ q $\end{document} is a prime power. Our results show that Sidel'nikov sequences enjoy good well-distribution measure and correlation measure. Furthermore, we prove that the set of size \begin{document}$ \phi(q-1) $\end{document} of \begin{document}$ k $\end{document} -ary Sidel'nikov sequences is collision free and possesses the strict avalanche effect property provided that \begin{document}$ k = o(q^{\frac{1}{4}}) $\end{document} , where \begin{document}$ \phi $\end{document} denotes Euler's totient function.
- Subjects :
- Pseudorandom number generator
Algebra and Number Theory
Computer Networks and Communications
Applied Mathematics
Euler's totient function
Microbiology
Measure (mathematics)
Combinatorics
Character sum
symbols.namesake
Collision free
symbols
Discrete Mathematics and Combinatorics
Prime power
Finite set
Mathematics
Subjects
Details
- ISSN :
- 19305338 and 19305346
- Volume :
- 17
- Database :
- OpenAIRE
- Journal :
- Advances in Mathematics of Communications
- Accession number :
- edsair.doi...........07e1a085e6d8db77824e4e6d59a407cc
- Full Text :
- https://doi.org/10.3934/amc.2021038