Back to Search Start Over

On the pseudorandom properties of $ k $-ary Sidel'nikov sequences

Authors :
Huaning Liu
Yixin Ren
Source :
Advances in Mathematics of Communications. 17:1072-1085
Publication Year :
2023
Publisher :
American Institute of Mathematical Sciences (AIMS), 2023.

Abstract

In 2002 Mauduit and Sarkozy started to study finite sequences of \begin{document}$ k $\end{document} symbols \begin{document}$ E_{N} = \left(e_{1},e_{2},\cdots,e_{N}\right)\in \mathcal{A}^{N}, $\end{document} where \begin{document}$ \mathcal{A} = \left\{a_{1},a_{2},\cdots,a_{k}\right\}(k\in \mathbb{N},k\geq 2) $\end{document} is a finite set of \begin{document}$ k $\end{document} symbols. Later many pseudorandom sequences of \begin{document}$ k $\end{document} symbols have been given and studied by using number theoretic methods. In this paper we study the pseudorandom properties of the \begin{document}$ k $\end{document} -ary Sidel'nikov sequences with length \begin{document}$ q-1 $\end{document} by using the estimates for certain character sums with exponential function, where \begin{document}$ q $\end{document} is a prime power. Our results show that Sidel'nikov sequences enjoy good well-distribution measure and correlation measure. Furthermore, we prove that the set of size \begin{document}$ \phi(q-1) $\end{document} of \begin{document}$ k $\end{document} -ary Sidel'nikov sequences is collision free and possesses the strict avalanche effect property provided that \begin{document}$ k = o(q^{\frac{1}{4}}) $\end{document} , where \begin{document}$ \phi $\end{document} denotes Euler's totient function.

Details

ISSN :
19305338 and 19305346
Volume :
17
Database :
OpenAIRE
Journal :
Advances in Mathematics of Communications
Accession number :
edsair.doi...........07e1a085e6d8db77824e4e6d59a407cc
Full Text :
https://doi.org/10.3934/amc.2021038