Back to Search Start Over

Hypothalamic perineuronal net assembly is required for sustained diabetes remission induced by fibroblast growth factor 1 in rats

Authors :
Karl J. Kaiyala
Jarrad M. Scarlett
Gregory J. Morton
Elaine Cabrales
Michael W. Schwartz
Jenny M. Brown
Christina K. Chan
Marie A. Bentsen
Thomas N. Wight
Kimberly M. Alonge
William A. Banks
Zaman Mirzadeh
Aric F. Logsdon
Miklos Guttman
Source :
Nature Metabolism. 2:1025-1033
Publication Year :
2020
Publisher :
Springer Science and Business Media LLC, 2020.

Abstract

We recently showed that perineuronal nets (PNNs) enmesh glucoregulatory neurons in the arcuate nucleus (Arc) of the mediobasal hypothalamus (MBH)1, but whether these PNNs play a role in either the pathogenesis of type 2 diabetes (T2D) or its treatment remains unclear. Here we show that PNN abundance within the Arc is markedly reduced in the Zucker diabetic fatty (ZDF) rat model of T2D, compared with normoglycaemic rats, correlating with altered PNN-associated sulfation patterns of chondroitin sulfate glycosaminoglycans in the MBH. Each of these PNN-associated changes is reversed following a single intracerebroventricular (icv) injection of fibroblast growth factor 1 (FGF1) at a dose that induces sustained diabetes remission in male ZDF rats. Combined with previous work localizing this FGF1 effect to the Arc area2-4, our finding that enzymatic digestion of Arc PNNs markedly shortens the duration of diabetes remission following icv FGF1 injection in these animals identifies these extracellular matrix structures as previously unrecognized participants in the mechanism underlying diabetes remission induced by the central action of FGF1.

Details

ISSN :
25225812
Volume :
2
Database :
OpenAIRE
Journal :
Nature Metabolism
Accession number :
edsair.doi...........08eda98354d8e7aed3cc1f737188f87e
Full Text :
https://doi.org/10.1038/s42255-020-00275-6