Back to Search Start Over

Towards understanding the variability in biospheric CO2 fluxes: using FTIR spectrometry and a chemical transport model to investigate the sources and sinks of carbonyl sulfide and its link to CO2

Authors :
Y. Wang
N. M. Deutscher
M. Palm
T. Warneke
J. Notholt
I. Baker
J. Berry
P. Suntharalingam
N. Jones
E. Mahieu
B. Lejeune
J. E. Campbell
A. Wolf
S. Kremser
Publication Year :
2015
Publisher :
Copernicus GmbH, 2015.

Abstract

Understanding carbon dioxide (CO2) biospheric processes is of great importance because the terrestrial exchange drives the seasonal and inter-annual variability of CO2 in the atmosphere. Atmospheric inversions based on CO2 concentration measurements alone can only determine net biosphere fluxes, but not differentiate between photosynthesis (uptake) and respiration (production). Carbonyl sulfide (OCS) could provide an important additional constraint: it is also taken up by plants during photosynthesis but not emitted during respiration, and therefore is a potential mean to differentiate between these processes. Solar absorption Fourier Transform InfraRed (FTIR) spectrometry allows for the retrievals of the atmospheric concentrations of both CO2 and OCS from measured solar absorption spectra. Here, we investigate co-located and quasi-simultaneous FTIR measurements of OCS and CO2 performed at three selected sites located in the Northern Hemisphere. These measurements are compared to simulations of OCS and CO2 using a chemical transport model (GEOS-Chem). The OCS simulations are driven by different land biospheric fluxes to reproduce the seasonality of the measurements. Increasing the plant uptake of Kettle et al. (2002a) by a factor of three resulted in the best comparison with FTIR measurements. However, there are still discrepancies in the latitudinal distribution when comparing with HIPPO (HIAPER Pole-to-Pole Observations) data spanning both hemispheres. The coupled biospheric fluxes of OCS and CO2 from the simple biosphere model (SiB) are used in the study and compared to measurements. The CO2 simulation with SiB fluxes agrees with the measurements well, while the OCS simulation reproduced a weaker drawdown than FTIR measurements at selected sites, and a smaller latitudinal gradient in the Northern Hemisphere during growing season. An offset in the timing of the seasonal cycle minimum between SiB simulation and measurements is also seen. Using OCS as a photosynthesis proxy can help to understand how the biospheric processes are reproduced in models and to further understand the carbon cycle in the real world.

Details

Database :
OpenAIRE
Accession number :
edsair.doi...........097f55e45725bb5e1aabf2434d118f97
Full Text :
https://doi.org/10.5194/acpd-15-26025-2015