Back to Search
Start Over
Assessment of polyelectrolyte coating stability under dynamic buffer conditions in CE
- Source :
- Journal of Separation Science. 34:2427-2432
- Publication Year :
- 2011
- Publisher :
- Wiley, 2011.
-
Abstract
- Dynamic buffer conditions are present in many electrophoretically driven separations. Polyelectrolyte multilayer coatings have been employed in CE because of their chemical and physical stability as well as their ease of application. The goal of this study is to measure the effect of dynamic changes in buffer pH on flow using a real-time method for measuring EOF. Polyelectrolyte multilayers (PEMs) were composed of pairs of strong or completely ionized polyelectrolytes including poly(diallyldimethylammonium) chloride and poly(styrene sulfonate) and weak or ionizable polyelectrolytes including poly(allylamine) and poly(methacrylic acid). Polyelectrolyte multilayers of varying thicknesses (3, 4, 7, 8, 15, or 16 layers) were also studied. While the magnitude of the EOF was monitored every 2 s, the buffer pH was exchanged from a relatively basic pH (7.1) to increasingly acidic pHs (6.6, 6.1, 5.5, and 5.1). Strong polyelectrolytes responded minimally to changes in buffer pH ( 10%) and sometimes irreversible changes were measured with weak polyelectrolytes. Thicker coatings resulted in a similar magnitude of response but were more likely to degrade in response to buffer pH changes. The most stable coatings were formed from thinner layers of strong polyelectrolytes.
- Subjects :
- Materials science
Analytical chemistry
Filtration and Separation
engineering.material
Chloride
Buffer (optical fiber)
Polyelectrolyte
Analytical Chemistry
Allylamine
Styrene
chemistry.chemical_compound
Sulfonate
Methacrylic acid
chemistry
Coating
Chemical engineering
medicine
engineering
medicine.drug
Subjects
Details
- ISSN :
- 16159306
- Volume :
- 34
- Database :
- OpenAIRE
- Journal :
- Journal of Separation Science
- Accession number :
- edsair.doi...........0b372e9f5ace15d818c43e5a2a6a5b85
- Full Text :
- https://doi.org/10.1002/jssc.201100044