Back to Search Start Over

Automatic detection of synaptic partners in a whole-brain Drosophila electron microscopy data set

Authors :
Tri Nguyen
Jan Funke
Stephan Gerhard
Rachel Wilson
Tom Kazimiers
Philipp Schlegel
Wei-Chung Allen Lee
Renate Krause
Larissa Heinrich
Davi D. Bock
Caroline Malin-Mayor
Srinivas C. Turaga
Arlo Sheridan
Gregory S.X.E. Jefferis
Julia Buhmann
Stephan Saalfeld
Matthew Cook
Source :
Nature Methods. 18:771-774
Publication Year :
2021
Publisher :
Springer Science and Business Media LLC, 2021.

Abstract

We develop an automatic method for synaptic partner identification in insect brains and use it to predict synaptic partners in a whole-brain electron microscopy dataset of the fruit fly. The predictions can be used to infer a connectivity graph with high accuracy, thus allowing fast identification of neural pathways. To facilitate circuit reconstruction using our results, we develop CIRCUITMAP, a user interface add-on for the circuit annotation tool CATMAID. A deep-learning-based approach enables automatic identification of synaptically connected neurons in electron microscopy datasets of the fly brain.

Details

ISSN :
15487105 and 15487091
Volume :
18
Database :
OpenAIRE
Journal :
Nature Methods
Accession number :
edsair.doi...........0b7b1012ae8d1ba36bf9711a7cfdc41e
Full Text :
https://doi.org/10.1038/s41592-021-01183-7