Back to Search
Start Over
Bethe subalgebras of the group algebra of the symmetric group
- Source :
- Transformation Groups. 18:767-801
- Publication Year :
- 2013
- Publisher :
- Springer Science and Business Media LLC, 2013.
-
Abstract
- We introduce families \( \mathcal{B}_n^S\left( {{z_1},\ldots,{z_n}} \right) \) and \( \mathcal{B}_{{n,\hbar}}^S\left( {{z_1},\ldots,{z_n}} \right) \) of maximal commutative subalgebras, called Bethe subalgebras, of the group algebra \( \mathbb{C}\left[ {\mathfrak{S}n} \right] \) of the symmetric group. Bethe subalgebras are deformations of the GelfandāZetlin subalgebra of \( \mathbb{C}\left[ {\mathfrak{S}n} \right] \). We describe various properties of Bethe subalgebras.
- Subjects :
- Discrete mathematics
Double affine Hecke algebra
Algebra and Number Theory
Mathematics::Operator Algebras
Mathematics::Rings and Algebras
Subalgebra
Quantum algebra
Group algebra
Combinatorics
Symmetric group
Mathematics::Quantum Algebra
Algebra representation
Geometry and Topology
Algebra over a field
Mathematics::Representation Theory
Commutative property
Mathematics
Subjects
Details
- ISSN :
- 1531586X and 10834362
- Volume :
- 18
- Database :
- OpenAIRE
- Journal :
- Transformation Groups
- Accession number :
- edsair.doi...........0c52a92596f7309e5f2fa79e22791d21
- Full Text :
- https://doi.org/10.1007/s00031-013-9232-y