Back to Search Start Over

In Situ Supramolecular Self-Assembly Assisted Synthesis of Li4Ti5O12–Carbon-Reduced Graphene Oxide Microspheres for Lithium-Ion Batteries

Authors :
Dong Shu
Xiaoping Zhou
Aimei Gao
Honghong Cheng
Hongyu Chen
Fenyun Yi
Tao Meng
Fan Zhang
Source :
ACS Sustainable Chemistry & Engineering. 7:916-924
Publication Year :
2018
Publisher :
American Chemical Society (ACS), 2018.

Abstract

Li4Ti5O12 (LTO)-carbon (C)-reduced graphene oxide (rGO) microspheres are synthesized via in situ supramolecular self-assembly, combined with spray drying and high-temperature calcination. Dopamine can polymerize on the surface of Ti(OH)4 and form polydopamine, through which graphene oxide(GO) connects with Ti(OH)4 uniformly and tightly to form a homogeneous supramolecular sol system. During the high-temperature calcination, polydopamine is carbonized to carbon to connect LTO with rGO, so that the aggregation of rGO is inhibited, and small-sized LTO particles are obtained. The scanning electron microscopy (SEM) image shows that in the as-prepared LTO-C-rGO microspheres, LTO particles with diameters of ∼50 nm remained homogeneous and wrapped in a three-dimensional network built by the rGO nanosheets. Electrochemical measurements show that the LTO-C-rGO anode exhibits a high reversible capacity of 184 mAh g–1 at 1 C and a high capacity retention of 94.5% after 500 cycles at 20 C. The above excellent electroc...

Details

ISSN :
21680485
Volume :
7
Database :
OpenAIRE
Journal :
ACS Sustainable Chemistry & Engineering
Accession number :
edsair.doi...........0d6468e7b48586c49382c40c86f51605