Back to Search
Start Over
Remote sensing application in the carbon flux modelling of terrestrial ecosystem
- Source :
- SPIE Proceedings.
- Publication Year :
- 2004
- Publisher :
- SPIE, 2004.
-
Abstract
- The determination of terrestrial ecosystem carbon source/sink spatial pattern is becoming one of the hottest problems and many environment politics focus on it. As a new tool for terrestrial ecosystem carbon modelling at large scale from field plot, to region, to global, remote sensing is applied to initialize, drive, and validate the model, combined with geophysics information system (GIS) and computer modelling. Carbon flux models with remote sensing data as input may be classified as light use efficiency model, process model, and eco-physiological model based on “big leaf” hypothesis. The model generally includes two parts: NPP and soil respiration model to estimate carbon flux based on the principle that the carbon flux of ecosystem equal NPP minus heterogeneity respiration (soil respiration). Remote sensing, however, is more applied in NPP modeling but little in soil respiration estimation. The latter mostly based on relationship between soil respiration and soil temperature and is highly developed. Since remote sensing is applied to retrieve land surface temperature (LST) with infrared waveband, a hypothesis was put forward, that is, land surface temperature retrieved from infrared waveband can substitute soil temperature to estimate soil respiration. The hypothesis was validated with a field experiment and result was given in this article. The experiment located in a winter wheat field at Quzhou experiment station, Hebei province, China, from Apr 19 to May 20, in 2002. The soil respiration rate was measured with CID photosynthesis system, and canopy infrared temperature, soil surface temperature were measured respectively at same time. The station provided us soil moisture content data of whole growth of winter wheat. The result shows that the soil CO 2 efflux from winter wheat field is -0.03~1.38μmolm -2 s -1 . Its diurnal variation is well fitted with univariate quartic curve. Its variation in winter wheat heading growth period well coincide with temperature and soil moisture content. The Pearson correlation analysis shows that, on the averaged sense, for a day, soil CO 2 efflux significantly correlated with the temperature of the air (T air ), the soil surface (T sur ), the averaged thermal (T inf ) temperature respectively at the p-level
Details
- ISSN :
- 0277786X
- Database :
- OpenAIRE
- Journal :
- SPIE Proceedings
- Accession number :
- edsair.doi...........0d77992a76edb742fcade8590909d0de
- Full Text :
- https://doi.org/10.1117/12.524332