Back to Search Start Over

Validation of a filtered drag model for solid residence time distribution (RTD) prediction in a pilot-scale FCC riser

Authors :
Liqiang Lu
Xi Gao
Tingwen Li
Yupeng Xu
Jia Yu
William A. Rogers
Cheng Li
Source :
Powder Technology. 378:339-347
Publication Year :
2021
Publisher :
Elsevier BV, 2021.

Abstract

Computational fluid dynamics (CFD) is a powerful tool for prediction and analysis of complex multiphase flow hydrodynamics and residence time distribution (RTD) in chemical reactors. This study presented the validation and application of a filtered drag model for solid RTD prediction in a pilot-scale fluid catalytic cracking (FCC) circulating fluidized bed (CFB) riser with Geldart A particles. First, the filtered drag model implemented in the open-source MFiX-TFM solver was validated for flow hydrodynamics simulation in a FCC CFB riser. After that, the model was further employed to validate its ability for solid RTD prediction in the same riser by comparing the simulation results with the experimental data. The simulation with the filtered drag model well reproduced the tracer response experiment which is more accurate than that with the Gidaspow drag model. Simulations with both pulse and step tracer injection methods were compared, which reveals the limitation of solid RTD measurement using a pulse tracer injection method in the experiment.

Details

ISSN :
00325910
Volume :
378
Database :
OpenAIRE
Journal :
Powder Technology
Accession number :
edsair.doi...........0e791983167be063c32589a806f5cdb0