Back to Search
Start Over
Validation of a filtered drag model for solid residence time distribution (RTD) prediction in a pilot-scale FCC riser
- Source :
- Powder Technology. 378:339-347
- Publication Year :
- 2021
- Publisher :
- Elsevier BV, 2021.
-
Abstract
- Computational fluid dynamics (CFD) is a powerful tool for prediction and analysis of complex multiphase flow hydrodynamics and residence time distribution (RTD) in chemical reactors. This study presented the validation and application of a filtered drag model for solid RTD prediction in a pilot-scale fluid catalytic cracking (FCC) circulating fluidized bed (CFB) riser with Geldart A particles. First, the filtered drag model implemented in the open-source MFiX-TFM solver was validated for flow hydrodynamics simulation in a FCC CFB riser. After that, the model was further employed to validate its ability for solid RTD prediction in the same riser by comparing the simulation results with the experimental data. The simulation with the filtered drag model well reproduced the tracer response experiment which is more accurate than that with the Gidaspow drag model. Simulations with both pulse and step tracer injection methods were compared, which reveals the limitation of solid RTD measurement using a pulse tracer injection method in the experiment.
- Subjects :
- Materials science
business.industry
General Chemical Engineering
Flow (psychology)
Multiphase flow
02 engineering and technology
Mechanics
Computational fluid dynamics
Chemical reactor
021001 nanoscience & nanotechnology
Residence time distribution
Physics::Fluid Dynamics
020401 chemical engineering
Drag
TRACER
Fluidized bed combustion
0204 chemical engineering
0210 nano-technology
business
Subjects
Details
- ISSN :
- 00325910
- Volume :
- 378
- Database :
- OpenAIRE
- Journal :
- Powder Technology
- Accession number :
- edsair.doi...........0e791983167be063c32589a806f5cdb0