Back to Search Start Over

A k-norm pruning algorithm for decision tree classifiers based on error rate estimation

Authors :
Michael Georgiopoulos
Mingyu Zhong
Georgios C. Anagnostopoulos
Source :
Machine Learning. 71:55-88
Publication Year :
2008
Publisher :
Springer Science and Business Media LLC, 2008.

Abstract

Decision trees are well-known and established models for classification and regression. In this paper, we focus on the estimation and the minimization of the misclassification rate of decision tree classifiers. We apply Lidstone's Law of Succession for the estimation of the class probabilities and error rates. In our work, we take into account not only the expected values of the error rate, which has been the norm in existing research, but also the corresponding reliability (measured by standard deviations) of the error rate. Based on this estimation, we propose an efficient pruning algorithm, called k-norm pruning, that has a clear theoretical interpretation, is easily implemented, and does not require a validation set. Our experiments show that our proposed pruning algorithm produces accurate trees quickly, and compares very favorably with two other well-known pruning algorithms, CCP of CART and EBP of C4.5.

Details

ISSN :
15730565 and 08856125
Volume :
71
Database :
OpenAIRE
Journal :
Machine Learning
Accession number :
edsair.doi...........0f5f06ac2da6cc02b188e95b76734c4a
Full Text :
https://doi.org/10.1007/s10994-007-5044-4