Back to Search Start Over

In situ gelation of Al(III)-4-tert-butylpyridine based metal-organic gel electrolyte for efficient quasi-solid-state dye-sensitized solar cells

Authors :
Yang Cao
Dai-Bin Kuang
Hong-Yan Chen
Cheng-Yong Su
Hua-Shang Rao
Yu-Jie Dong
Source :
Journal of Power Sources. 343:148-155
Publication Year :
2017
Publisher :
Elsevier BV, 2017.

Abstract

A novel Al(III)-4-tert-butylpyridine (TBP) gel electrolyte is successfully achieved by a simple and facile in situ gelation method and applied as quasi-solid-state electrolyte for dye-sensitized solar cells (DSSCs). Through directly adding Al3+ into the TBP solution, the induced hydrolysis of Al3+ and the coordination interaction between Al3+ and TBP facilitates the formation of metal-organic gels(MOGs), in which such bi-functional TBP molecules will act as both gelators and active additives to tailor the performance of electrolytes. In addition, the gel electrolytes can largely preserve the properties of liquid electrolyte and penetrate well into the TiO2 photoanode film. Both Al3+ and TBP in the gel electrolytes affect the performance of cells. The Jsc of gel electrolytes decrease with the increasing concentration of gelators due to the enhanced strength and viscosity of the gel electrolytes, while the competition between Al3+ and TBP causes conduction band edge shift and electron recombination, leading to a variation of Voc. Herein, by tuning the molar ratio of Al3+/TBP, an impressive conversion efficiency of 8.25% is obtained, indicating a promising protocol of preparing MOGs not only to achieve high performance in solar cells, but also opens up extended scopes in other energy-related fields such as catalysis.

Details

ISSN :
03787753
Volume :
343
Database :
OpenAIRE
Journal :
Journal of Power Sources
Accession number :
edsair.doi...........14f0d91c6a305206a656ed44307f1ff3
Full Text :
https://doi.org/10.1016/j.jpowsour.2017.01.051