Back to Search
Start Over
Kinetics and driving forces of abnormal grain growth in thin Cu films
- Source :
- Acta Materialia. 60:2397-2406
- Publication Year :
- 2012
- Publisher :
- Elsevier BV, 2012.
-
Abstract
- The abnormal growth of individual (1 0 0) oriented grains is monitored by the in situ electron backscatter diffraction technique for more than 24 h at three different annealing temperatures (90 °C, 104 °C and 118 °C) in 1–5 μm thick Cu films on polyimide substrates. The (1 0 0) grain growth velocity increases with higher film thickness and annealing temperature, as suggested by an earlier model by Thompson and Carel. As a result, the final (1 0 0) texture fraction becomes more dominant for higher annealing temperatures and larger film thicknesses. The Thompson–Carel model, however, predicts that the (1 1 1) grains will preferably grow at temperatures up to 118 °C. Our calculations of the driving forces revealed that in addition to minimization of the strain energy (due to the thermal mismatch between film and substrate) and of the surface energy, the energy stored in the dislocations plays a decisive role in grain growth. Our observations can be understood by the notion that initially available (1 0 0) grain nuclei start to grow very rapidly, due to dislocation annihilation, and thus “overrun” the (1 1 1) grains in size.
- Subjects :
- Materials science
Polymers and Plastics
Annealing (metallurgy)
Metals and Alloys
Abnormal grain growth
Surface energy
Electronic, Optical and Magnetic Materials
Strain energy
Crystallography
Grain growth
Ceramics and Composites
Composite material
Dislocation
Polyimide
Electron backscatter diffraction
Subjects
Details
- ISSN :
- 13596454
- Volume :
- 60
- Database :
- OpenAIRE
- Journal :
- Acta Materialia
- Accession number :
- edsair.doi...........156d08c28fa59ddd533ddb229a7c9b33
- Full Text :
- https://doi.org/10.1016/j.actamat.2011.12.030