Back to Search Start Over

EEG with a reduced number of electrodes: Where to detect and how to improve visually, auditory and somatosensory evoked potentials

Authors :
Xuan P. Nguyen
Sebastian A.F. Stehlin
Markolf H. Niemz
Source :
Biocybernetics and Biomedical Engineering. 38:700-707
Publication Year :
2018
Publisher :
Elsevier BV, 2018.

Abstract

The measurement of evoked potentials has become a standard tool to test new hardware and software for electroencephalography (EEG). In this study, we investigate where to detect and how to improve visually, auditory and somatosensory evoked potentials with a reduced number of electrodes. We measured a total of 50 evoked potentials in healthy subjects, and we were able to detect visually, auditory and somatosensory evoked potentials with just three electrodes. We also investigated where to measure a combination of visually, auditory and somatosensory evoked potentials and found the best positions to be Oz, O1, O2, TP9 and TP10. In the second part of this study, we analyzed how the evoked potentials depend on the segmentation frequency selected to superpose EEG responses. We found that the detection of visually evoked potentials requires the segmentation frequency to match the stimulus frequency with an accuracy of at least 99.92 percent. The detection of auditory evoked potentials and somatosensory evoked potentials requires a matching of at least 99.95 percent. Therefore, a correct matching of the segmentation frequency with the stimulation frequency is the primary key to improving the quality of evoked potentials.

Details

ISSN :
02085216
Volume :
38
Database :
OpenAIRE
Journal :
Biocybernetics and Biomedical Engineering
Accession number :
edsair.doi...........192ec7bd9050757743effeb468080022
Full Text :
https://doi.org/10.1016/j.bbe.2018.06.001