Back to Search
Start Over
Understanding and Eliminating Hysteresis for Highly Efficient Planar Perovskite Solar Cells
- Source :
- Advanced Energy Materials. 7:1700414
- Publication Year :
- 2017
- Publisher :
- Wiley, 2017.
-
Abstract
- Through detailed device characterization using cross-sectional Kelvin probe force microscopy (KPFM) and trap density of states measurements, we identify that the J–V hysteresis seen in planar organic–inorganic hybrid perovskite solar cells (PVSCs) using SnO2 electron selective layers (ESLs) synthesized by low-temperature plasma-enhanced atomic-layer deposition (PEALD) method is mainly caused by the imbalanced charge transportation between the ESL/perovskite and the hole selective layer/perovskite interfaces. We find that this charge transportation imbalance is originated from the poor electrical conductivity of the low-temperature PEALD SnO2 ESL. We further discover that a facile low-temperature thermal annealing of SnO2 ESLs can effectively improve the electrical mobility of low-temperature PEALD SnO2 ESLs and consequently significantly reduce or even eliminate the J–V hysteresis. With the reduction of J–V hysteresis and optimization of deposition process, planar PVSCs with stabilized output powers up to 20.3% are achieved. The results of this study provide insights for further enhancing the efficiency of planar PVSCs.
- Subjects :
- Kelvin probe force microscope
Electrical mobility
Materials science
Renewable Energy, Sustainability and the Environment
business.industry
Nanotechnology
02 engineering and technology
010402 general chemistry
021001 nanoscience & nanotechnology
01 natural sciences
0104 chemical sciences
Hysteresis
Planar
Electrical resistivity and conductivity
Optoelectronics
General Materials Science
0210 nano-technology
business
Layer (electronics)
Deposition (law)
Perovskite (structure)
Subjects
Details
- ISSN :
- 16146840 and 16146832
- Volume :
- 7
- Database :
- OpenAIRE
- Journal :
- Advanced Energy Materials
- Accession number :
- edsair.doi...........19ae2734164fbe484aa6bbb8c569af05