Back to Search Start Over

Understanding and Eliminating Hysteresis for Highly Efficient Planar Perovskite Solar Cells

Authors :
Yue Yu
Xingzhong Zhao
Nikolas J. Podraza
Chuanxiao Xiao
Mowafak Al-Jassim
Rasha A. Awni
Chun-Sheng Jiang
Jing Chen
Yanfa Yan
Iordania Constantinou
Alexander J. Cimaroli
Dewei Zhao
Corey R. Grice
Kiran Ghimire
Changlei Wang
Wei-Qiang Liao
Pei Liu
Source :
Advanced Energy Materials. 7:1700414
Publication Year :
2017
Publisher :
Wiley, 2017.

Abstract

Through detailed device characterization using cross-sectional Kelvin probe force microscopy (KPFM) and trap density of states measurements, we identify that the J–V hysteresis seen in planar organic–inorganic hybrid perovskite solar cells (PVSCs) using SnO2 electron selective layers (ESLs) synthesized by low-temperature plasma-enhanced atomic-layer deposition (PEALD) method is mainly caused by the imbalanced charge transportation between the ESL/perovskite and the hole selective layer/perovskite interfaces. We find that this charge transportation imbalance is originated from the poor electrical conductivity of the low-temperature PEALD SnO2 ESL. We further discover that a facile low-temperature thermal annealing of SnO2 ESLs can effectively improve the electrical mobility of low-temperature PEALD SnO2 ESLs and consequently significantly reduce or even eliminate the J–V hysteresis. With the reduction of J–V hysteresis and optimization of deposition process, planar PVSCs with stabilized output powers up to 20.3% are achieved. The results of this study provide insights for further enhancing the efficiency of planar PVSCs.

Details

ISSN :
16146840 and 16146832
Volume :
7
Database :
OpenAIRE
Journal :
Advanced Energy Materials
Accession number :
edsair.doi...........19ae2734164fbe484aa6bbb8c569af05