Back to Search
Start Over
Physically based adaptive preconditioning for early vision
- Source :
- IEEE Transactions on Pattern Analysis and Machine Intelligence. 19:594-607
- Publication Year :
- 1997
- Publisher :
- Institute of Electrical and Electronics Engineers (IEEE), 1997.
-
Abstract
- Several problems in early vision have been formulated in the past in a regularization framework. These problems, when discretized, lead to large sparse linear systems. In this paper, we present a novel physically based adaptive preconditioning technique which can be used in conjunction with a conjugate gradient algorithm to dramatically improve the speed of convergence for solving the aforementioned linear systems. A preconditioner, based on the membrane spline, or the thin plate spline, or a convex combination of the two, is termed a physically based preconditioner for obvious reasons. The adaptation of the preconditioner to an early vision problem is achieved via the explicit use of the spectral characteristics of the regularization filter in conjunction with the data. This spectral function is used to modulate the frequency characteristics of a chosen wavelet basis, and these modulated values are then used in the construction of our preconditioner. We present the preconditioner construction for three different early vision problems namely, the surface reconstruction, the shape from shading, and the optical flow computation problems. Performance of the preconditioning scheme is demonstrated via experiments on synthetic and real data sets.
- Subjects :
- Mathematical optimization
business.industry
Preconditioner
Applied Mathematics
Linear system
MathematicsofComputing_NUMERICALANALYSIS
Wavelet transform
Mathematics::Numerical Analysis
Spline (mathematics)
Computational Theory and Mathematics
Artificial Intelligence
Conjugate gradient method
Adaptive system
Convex combination
Computer Vision and Pattern Recognition
Artificial intelligence
business
Thin plate spline
Algorithm
Software
Mathematics
Subjects
Details
- ISSN :
- 01628828
- Volume :
- 19
- Database :
- OpenAIRE
- Journal :
- IEEE Transactions on Pattern Analysis and Machine Intelligence
- Accession number :
- edsair.doi...........1a8c72ca86d9d1c7116986118c9fedda
- Full Text :
- https://doi.org/10.1109/34.601247